精英家教网 > 初中数学 > 题目详情

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则SAB′C′:SABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

【答案】
(1)3:1;60
(2)

解:∵四边形ABB′C′是矩形,

∴∠BAC′=90°.

∴θ=∠CAC′=∠BAC′﹣∠BAC=90﹣30=60°.

在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,

∴∠AB′B=30°,

∴n= =2


(3)

解:∵四边形ABB′C′是平行四边形,

∴AC′∥BB′,

又∵∠BAC=36°,

∴θ=∠CAC′=∠AC′B′=72°.

∴∠BB′A=∠BAC=36°,而∠B=∠B,

∴△ABC∽△B′BA,

∴AB:BB′=CB:AB,

∴AB2=CBBB′=CB(BC+CB′),

而 CB′=AC=AB=B′C′,BC=1,

∴AB2=1(1+AB),

∴AB=

∵AB>0,

∴n= =


【解析】解:(1)根据题意得:△ABC∽△AB′C′,
∴SAB′C′:SABC=( 2=( 2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
所以答案是:3:1,60;

【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对矩形的性质的理解,了解矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAm°,ABC和∠ACD的平分线相交于点A1得∠A1A1BC和∠A1CD的平分线相交于点A2得∠A2;…;A2018BC和∠A2018CD的平分线交于点A2019则∠A2019________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙0的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学计划购买A型和B型课桌凳共200套. 经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?

(2)、学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小龙沿着一条笔直的马路进行长跑比赛,小明在比赛过程中始终领先小龙,并匀速跑完了全程,小龙匀速跑了几分钟后提速和小明保持速度一致,又过了1分钟,小龙因体力问题,不得已又减速,并一直以这一速度完成了余下的比赛, 完成比赛所用时间比小明多了1分钟,已知小明跑后4分20秒时领先小龙175米,小明与小龙之间的距离(米)与他们所用时间(分钟)之间的函数关系如图所示.有下列说法:①小明到达终点时,小龙距离终点还有225米;②小明的速度是300米/分;③小龙提速前的速度是200米/分;④比赛全程为1 500米.其中正确的是( )

A. ①②③ B. ②③④

C. ①②④ D. ①③④

查看答案和解析>>

同步练习册答案