精英家教网 > 初中数学 > 题目详情
13.如果方程组$\left\{\begin{array}{l}{2x-y=m}\\{4x+my=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,求m、n的值.

分析 把x与y的值代入方程组求出m与n的值即可.

解答 解:把$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$代入方程组得:$\left\{\begin{array}{l}{4-1=m}\\{8+m=n}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=3}\\{n=11}\end{array}\right.$.

点评 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.(1)解方程组:$\left\{\begin{array}{l}{x-2y=1}\\{2x+2y=5}\end{array}\right.$
(2)解方程:$\frac{2}{x+3}$=$\frac{1}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:如图,四边形BCDE是矩形,AB=AC,求证:AE=AD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,有一组有规律的点:A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1),…依此规律可知,当n为奇数时,有点An(n-1,1);当n为偶数时,有点An(n-1,0).抛物线C1经过A1、A2、A3三点,抛物线C2经过A2、A3、A4三点,抛物线C3经过抛物线A3、A4、A5三点,…,抛物线Cn经过An、An+1、An+2
(1)找规律:C1的对称轴为x=1,C2的对称轴为x=2;并直接写出抛物线C3、C4的解析式.
(2)若点E(e,f1)、F(e,f2)分别在抛物线C27、C28上,当e=30时,求线段EF的长.
(3)若直线x=m分别交x轴、抛物线C999、抛物线C1000于点P、M、N,作直线A1000M、A1000N,当∠PA1000M=45°时,求sin∠PA1000M的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.阅读下面解题过程:
已知关于x的不等式(2a-b)x+a-5b>0的解集为x<$\frac{10}{7}$,求关于x的不等式ax>b的解集.
解:由题意得2a-b<0,解不等式得x<$\frac{5b-a}{2a-b}$.
由题意得$\frac{5b-a}{2a-b}$=$\frac{10}{7}$,解得b=$\frac{3}{5}$a.
因为2a-b<0,所以2a-$\frac{3}{5}$a<0,
即a<0,所以ax>b的解集为x<$\frac{b}{a}$,即x<$\frac{3}{5}$.
根据下面的解题思路解出下题.
关于x的不等式(2a-b)x>a-2b的解集为x<$\frac{5}{2}$,求关于x的不等式ax+b<0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:x-5(x-1)=2;
解不等式:x-5(x-1)>2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知抛物线y=a(x-h)2-2(a,h,是常数,a≠0),x轴交于点A,B,与y轴交于点C,点M为抛物线顶点.
(Ⅰ)若点A(-1,0),B(5,0),求抛物线的解析式;
(Ⅱ)若点A(-1,0),且△ABM是直角三角形,求抛物线的解析式;
(Ⅲ)若抛物线与直线y1=x-6相交于M、D两点
①用含a的式子表示点D的坐标;
②当CD∥x轴时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知等腰直角三角形△ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF;DE⊥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)若125x3+27=0,求x的值;
(2)若25y2-36=0,求y的值.

查看答案和解析>>

同步练习册答案