精英家教网 > 初中数学 > 题目详情
14.如图,在△ABC中,AB=6$\sqrt{5}$,AC=12,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P、Q,则线段PQ长度的最小值是(  )
A.6B.12C.$\frac{12\sqrt{5}}{5}$D.6$\sqrt{5}$

分析 找出PQ的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形FC+FD=PQ,由三角形的三边关系知,CF+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,由直角三角形的面积公式知,此时由直角三角形ABC的面积等于两直角边乘以的一半来求,也利用由斜边乘以斜边上的高CD来求出,根据面积相等可得出CD的长,即为线段PQ长度的最小值.

解答 解:线段PQ长度的最小值时,PQ为圆的直径,
如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,

∵圆F与AB相切,
∴FD⊥AB,
∵AB=6$\sqrt{5}$,AC=12,BC=6,
∴∠ACB=90°,FC+FD=PQ,
∴CF+FD>CD,且PQ为圆F的直径,
∵当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD有最小值,即CD为圆F的直径,
且S△ABC=$\frac{1}{2}$BC•CA=$\frac{1}{2}$CD•AB,
∴PQ=CD=$\frac{BC•AC}{AB}$=$\frac{6×12}{6\sqrt{5}}$=$\frac{12\sqrt{5}}{5}$.
故选:C.

点评 此题考查了切线的性质,垂线段最短,圆周角定理,以及直角三角形面积的求法,其中根据题意得:当点F在直角三角形ABC的斜边AB的高上CD时,PQ=CD为最小值是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,是10×8的网格,网格中每个小正方形的边长均为1,线段AB的端点都在小正方形的顶点上,
(1)请在图中分别画出以AB为边的等腰直角三角形ABC、等腰钝角三角形ABD,且使C、D两点都在小正方形的顶点上;
(2)连接CD,请直接写出四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,点A(a,b)是双曲线y=$\frac{8}{x}$(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.
(1)△PAC的面积是4;
(2)当a=2,P点的坐标为(-2,0)时,求△ACB的面积;
(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,一束平行太阳光照射到正五边形上,若∠1=45°,则∠2=27°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知等边△ABC,以AB为直径的半圆与BC边交于点D,过点D作⊙O的切线DF交AC于点F,过点D作DE⊥AB,垂足为点E,过点F作FG⊥AB,垂足为点G,连结GD.
(1)求证:DF⊥AC;
(2)若AB=8,求tan∠FGD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程x4-6x2+5=0这是一个一元四次方程,根据该方程的特点,我们通常可以这样来解:设x2=y,那么x4=y2,于是原方程可变为y2-6y+5=0…①,解这个方程得:y1=1,y2=5.当y=1时,x2=1,∴x=±1;当y=5时,x2=5,∴x=±$\sqrt{5}$.所以原方程有四个根:x1=1,x2=-1,x3=$\sqrt{5}$,x4=-$\sqrt{5}$.
(1)这一解法在由原方程得到方程①的过程中,利用了换元法达到降次的目的,体现了转化的数学思想.
(2)参照上面解题的思想方法解方程:($\frac{x}{{x}^{2}-1}$)2-$\frac{5x}{{x}^{2}-1}$+6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.直线AB经过点P(3,4)与坐标轴交于A、B,当S△AOB最小时,△AOB的内切圆半径是2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.方程$\sqrt{3}$+$\sqrt{2}$x=x-$\sqrt{5}$的解是x=-$\sqrt{10}$-$\sqrt{6}$-$\sqrt{5}$-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案