精英家教网 > 初中数学 > 题目详情
(2013•封开县一模)已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.
分析:(1)由同角的余角相等得到一对角相等,再由一对直角相等,得到三角形AOB与三角形AOC相似,由相似得比例,求出OC的长,即可确定出C坐标;
(2)由B与C坐标设出抛物线的二根式,将A坐标代入求出a的值,确定出抛物线解析式,求出对称轴即可;
(3)连接AP,CP,过P作PQ垂直于x轴,将x=m代入抛物线解析式表示出P的纵坐标,即为PQ的长,三角形APC面积=梯形APQO面积+三角形PQC面积-三角形AOC面积,列出S关于m的二次函数解析式,利用二次函数的性质求出S最大时m的值,即可确定出此时P的坐标.
解答:解:(1)∵∠AOB=∠BAC=90°,
∴∠ABO+∠BAO=90°,∠ABO+∠ACB=90°,
∴∠BAO=∠ACB,
又∵∠AOB=∠COA=90°,
∴△ABO∽△CAO,
OA
OC
=
OB
OA
,即OA2=OB•OC,
∵A(0,2),B(-1,0),即OA=2,OB=1,
∴OC=4,
则C(4,0);

(2)设抛物线解析式为y=a(x+1)(x-4),
将A(0,2)代入得:2=-4a,即a=-
1
2

则过A、B、C三点的抛物线的解析式为y=-
1
2
(x+1)(x-4)=-
1
2
x2+
3
2
x+2,对称轴为直线x=
3
2


(3)连接AP,CP,过P作PQ⊥x轴,交x轴于点Q,
将x=m代入抛物线解析式得:n=-
1
2
m2+
3
2
m+2,
∵OA=2,OC=4,OQ=m,PQ=-
1
2
m2+
3
2
m+4,QC=4-m,
∴S=S△APC=S梯形APQO+S△PQC-S△AOC=
1
2
×m×(2-
1
2
m2+
3
2
m+4)+
1
2
×(4-m)×(-
1
2
m2+
3
2
m+4)-
1
2
×2×4=-m2+4m+4=-(m-2)2+8,
∵S关于m的二次函数解析式中二次项系数为-1<0,即抛物线开口向下,
∴当m=2时,S最大值为8,此时P(2,3).
点评:考查了二次函数综合题,涉及的知识有:相似三角形的判定与性质,待定系数法确定抛物线解析式,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•封开县一模)下列图形中对称轴只有两条的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)观察下列图形的排列规律(其中分别表示三角形、正方形、五角星),若第一个图形是三角形,则第18个图形是
五角星
五角星
.(填图形名称)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)计算:(
2
+1)0-2-1+
27
-6sin60°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)某生态示范村种植基地种植一批葡萄,原计划总产量要达到36万斤.为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)如图,Rt△ABC的直角边BC=8,AC=6
(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);
(2)连结D、C两点,求CD的长度.

查看答案和解析>>

同步练习册答案