精英家教网 > 初中数学 > 题目详情
如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为( )

A.5:3
B.3:5
C.4:3
D.3:4
【答案】分析:由题意可得△BCE≌△DCF,从而得到CD=BC,根据相似三角形的判定方法得到△ECM∽△FDM,则勾股定理可求得DF的长,从而可得到DM:MC的值.
解答:解:由题意知△BCE绕点C顺时转动了90度,
∴△BCE≌△DCF,∠ECF=∠DFC=90°,
∴CD=BC=5,DF∥CE,
∴∠ECD=∠CDF,
∵∠EMC=∠DMF,
∴△ECM∽△FDM,
∴DM:MC=DF:CE,
∵DF==4,
∴DM:MC=DF:CE=4:3.
故选C.
点评:本题利用了旋转后的图形与原图形全等,及全等三角形的性质,勾股定理,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案