分析 (1)由翻折变换的定义得到∠BEF=∠2;由矩形的性质得到AD∥BC,进而得到∠2=∠1=60°,求出∠3即可解决问题;
(2)根据矩形的性质得到AD∥BC,由平行线的性质得到∠1=∠2.根据折叠的性质可得∠BEF=∠2,等量代换得到结论;
(3)根据勾股定理得到BE=$\frac{15}{2}$,得到BF=BE=$\frac{15}{2}$,求得C′F=CF=$\frac{9}{2}$,根据三角形的面积公式即可得到结论.
解答 解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠1=60°,
根据折叠的性质可得:∠BEF=∠2=60°,
∴∠3=180°-∠BEF-∠2=180°-60°-60°=60°;
(2)△BEF是等腰三角形,
理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠1,
根据折叠的性质可得:∠BEF=∠2,
∴∠BEF=∠1,
∴△BEF是等腰三角形;
(3)∵BE=DE,
∴AE=AD-DE=12-DE=12-BE,
∵AB2=BE2-AE2,即62=BE2-(12-BE)2,
∴BE=$\frac{15}{2}$,
∴BF=BE=$\frac{15}{2}$,
∴C′F=CF=$\frac{9}{2}$,
∵BC′=AB=6,∠C′=∠C=90°,
∴S△BC′F=$\frac{1}{2}$×6×$\frac{9}{2}$=$\frac{27}{2}$.
点评 此题考查了矩形的性质,折叠的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m>-1 | B. | m<-$\frac{1}{2}$ | C. | $-\frac{1}{2}$<m<1 | D. | -1<m<-$\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com