精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,AE、AF分别是BC,CD的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC=________,∠ADC=________.

40°    60°
分析:连接AC,由线段垂直平分线的性质可得出AB=AC=AD,即B、C、D在以A为圆心,AB为半径的圆上,再由圆周角定理即可求解.
解答:连接AC,

∵AE、AF分别是BC、CD的中垂线,
∴AB=AC=AD,
∴B、C、D在以A为圆心,AB为半径的圆上,
∵∠CBD=30°,
∴∠DAC=2∠DBC=60°,
∵AF⊥CD,CF=DF,
∴∠DAF=30°,
∴∠ADC=60°,
又∵∠EAC=80°-30°=50°,
∴∠ABC=∠ACE=90°-50°=40°.
故答案为:40°,60°.
点评:本题考查的是线段垂直平分线的性质及圆周角定理,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案