精英家教网 > 初中数学 > 题目详情
初三某班在庆祝申奥成功的活动中,制作某种喜庆用品需将一张半径为2的半圆形纸板沿它的一条弦折叠,使得弧与直径相切,如图所示,如果切点分直径为3:1两部分,则折痕长为(  )
分析:过O作弦BC的垂线OP,垂足为D,分别与弧的交点为A、G,过切点F作PF⊥半径OC交OP于P点,根据垂径定理及其推论得到BD=DC,即OP为BC的中垂线,OP必过弧BGC所在圆的圆心,再根据切线的性质得到PF必过弧BGC所在圆的圆心,则点P为弧BGC所在圆的圆心,根据折叠的性质有⊙P为半径等于⊙O的半径,即PF=PG=OE=2,并且AD=GD,由F点分⊙O的直径为3:1两部分可计算出OF=1,在Rt△OPF中,设OG=x,利用勾股定理可计算出x,则由AG=PG-AP计算出AG,可得到DG的长,于是可计算出OD的长,在Rt△OBD中,利用勾股定理计算BD,即可得到BC的长.
解答:解:过O作弦BC的垂线OP,垂足为D,分别与弧的交点为A、G,过切点F作PF⊥半径OC交OP于P点,如图,
∵OP⊥BC,
∴BD=DC,即OP为BC的中垂线,
∴OP必过弧BGC所在圆的圆心,
又∵OE为弧BGC所在圆的切线,PF⊥OE,
∴PF必过弧BGC所在圆的圆心,
∴点P为弧BGC所在圆的圆心,
∵弧BAC沿BC折叠得到弧BGC,
∴⊙P为半径等于⊙O的半径,即PF=PG=OE=2,并且AD=GD,
∴OG=AP,
而F点分⊙O的直径为3:1两部分,
∴OF=1,
在Rt△OPF中,设OG=x,则OP=x+2,
∴OP2=OF2+PF2,即(x+2)2=12+22,解得x=
5
-2,
∴AG=2-(
5
-2)=4-
5

∴DG=
4-
5
2
=2-
5
2

∴OD=OG+DG=
5
-2+2-
5
2
=
5
2

在Rt△OBD中,BD2=OB2-OD2,即BD2=22-(
5
2
2
∴BD=
11
2

∴BC=2BD=
11

故选B.
点评:本题考查了折叠的性质:折叠后两图形全等,即对应线段相等,对应角相等.也考查了垂径定理、切线的性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、七年级某班在对一道单项选择题的答题情况分别用条形统计图(如图1)和扇形统计图(如图2)表示.

(1)该班有
50
人参加考试;
(2)老师说“大部分同学答对了”,你认为有
28
人答对了.

查看答案和解析>>

科目:初中数学 来源: 题型:

我校为净化校园,鼓励学生勤工俭学为班集体创收入,成立了废品回收点,回收各班级集的可回收废品,并视各班创收情况给予奖励性补贴,某班在近两个月的创收中各次的收入如下表所示:
次序 1 2 3 4 5 6 7 8
收入(元) 7.80 8.40 6.50 7.80 5.30 9.70 8.20 9.20
这组数据的中位数是
8
8

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

初三某班在庆祝申奥成功的活动中,制作某种喜庆用品需将一张半径为2的半圆形纸板沿它的一条弦折叠,使得弧与直径相切,如图所示,如果切点分直径为3:1两部分,则折痕长为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:初中数学 来源:2004年第2届“学用杯”全国数学知识应用竞赛九年级初赛试卷(解析版) 题型:选择题

初三某班在庆祝申奥成功的活动中,制作某种喜庆用品需将一张半径为2的半圆形纸板沿它的一条弦折叠,使得弧与直径相切,如图所示,如果切点分直径为3:1两部分,则折痕长为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案