精英家教网 > 初中数学 > 题目详情
2.把一个等边三角形分成四个等腰三角形(除如图外再画出两种分法),并像如图一样,不限画图工具、不留痕迹,注明每个等腰三角形的顶角的度数.

分析 (1)如图1,首先找出三角形ABC每条边的中点,然后把三条边的中点依次连接,即可把这个等边三角形分成四个等腰三角形;
(2)如图2,首先找出三角形ABC每条边的中点,然后把A点和BC边上的中点相连;再把BC边上的中点和其余两条边上的中点相连,即可把这个等边三角形分成四个等腰三角形.

解答 解:根据分析,如下图,

点评 (1)此题主要考查了作图-应用与设计作图问题,解答此题的关键是注意结合等腰三角形的性质和基本作图的方法作图;
(2)此题还考查了等腰三角形的性质:两腰相等,两底角相等,要熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.已知点(2,m)和点(-3,n)都在直线y=-3x+1上,试比较m和n的大小(请你至少想出两种判断方法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.两地的距离是87km,一辆公交车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公交车早20分钟到达B地,求两车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标是(15,8),B2015的坐标是(22015-1,22014).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,Rt△ABC中,∠OAB=90°,直角边OA在平面直角坐标系的x轴上,O为坐标原点,OA=2,AB=4,函数y=$\frac{k}{x}$(x>0)的图象分别与BO、BA交于C、D两点,且以B、C、D为顶点的三角形与△OAB相似,则k的值为$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.新年将至,小明家种植的草莓喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象.日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓销售单价w(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.
(1)求第6天到第14天的草莓销售单价w与上市时间x的函数关系式;
(2)分别求出第6天、第8天、第18天的当天的销售额;(说明:销售额=销售单价×销售量)
(3)试在图3中画出草莓的当天销售额W(元)与草莓上市时间x(单位:天)的函数图象(不需要在写出函数关系式),并直接写出当天销售额在1000元以上(含1000元)的上市时间x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.定义:若存在实数对坐标(x,y)同时满足一次函数y=px+q和反比例函数y=$\frac{k}{x}$,则二次函数y=px2+qx-k为一次函数和反比例函数的“联姻”函数.
(1)试判断(需要写出判断过程):一次函数y=-x+3和反比例函数y=$\frac{2}{x}$是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标.
(2)已知:整数m,n,t满足条件t<n<8m,并且一次函数y=(1+n)x+2m+2与反比例函数y=$\frac{2015}{x}$存在“联姻”函数y=(m+t)x2+(10m-t)x-2015,求m的值.
(3)若同时存在两组实数对坐标[x1,y1]和[x2,y2]使一次函数y=ax+2b和反比例函数y=$-\frac{c}{x}$为“联姻”函数,其中,实数a>b>c,a+b+c=0,设L=[x1-x2],求L的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某公司经销农产品业务,以3万元/吨的价格向农户收购农产品后,以甲、乙两种方式进行销售,甲方式包装后直接销售;乙方式深加工后再销售.甲方式农产品的包装成本为1万元/吨,根据市场调查,它每吨平均销售价格y(单位:万元)与销售量m(单位:吨)之间的函数关系为y=-m+14(2≤m≤8);乙方式农产品深加工等(不含进价)总费用S(单位:万元)与销售量n(单位:吨)之间的函数关系是S=3n+12,平均销售价格为9万元/吨.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-b2}{4a}$)
(1)该公司收购了20吨农产品,其中甲方式销售农产品x吨,其余农产品用乙方式销售,经销这20吨农产品所获得的毛利润为w万元(毛利润=销售总收入-经营总成本).
①直接写出:
甲方式购买和包装x吨农产品所需资金为4x万元;
乙方式购买和加工其余农产品所需资金为(132-6x)万元;
②求出w关于x的函数关系式;
③若农产品全部销售该公司共获得了48万元毛利润,求x的值;
④若农产品全部售出,该公司的最小利润是多少.
(2)该公司现有流动资金132万元,若将现有流动资金全部用于经销农产品,
①其中甲方式经销农产品x吨,则总经销量p为-x+14吨(用含x的代数式表示);
②当x为何值时,使公司获得最大毛利润,并求出最大毛利润.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,-4)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

同步练习册答案