【题目】在矩形ABCD中,AB=4,AD=10,E是AD的一点,且AE=2,M是AB上一点,射线ME交CD的延长线于点F,EG⊥ME交BC于点G,连接MG,FG,FG交AD于点N.
(1)当点M为AB中点时,则DF= ,FG= .(直接写出答案)
(2)在整个运动过程中,的值是否会变化,若不变,求出它的值;若变化,请说明理由.
(3)若△EGN为等腰三角形时,请求出所有满足条件的AM的长度.
【答案】(1)8, ;(2)在整个运动过程中,的值不会变化,理由详见解析;(3)当AM=﹣1+或1或时,△EGN为等腰三角形.
【解析】
(1)如图1,过G作GH⊥AD于H,先证明AE=AM=2,得∠AEM=∠DEF=45°,则DF=DE=8,再求CG的长,根据勾股定理计算FG的长;
(2)根据ME⊥EG,证明△AME∽△HEG,△EHG∽△FDE,可得tan∠EGM==tan∠EFG=,可得∠EGM=∠EFG.可得∠MGF=90°,由三角函数定义可得结论;
(3)设AM=m,则BM=4﹣m,DF=4m,证明△MBG∽△GCF,表示CG=8﹣2m,BG=2+2m.分三种情况进行讨论,根据平行线分线段成比例定理和三角函数定义列等式可得结论.
(1)如图1,过G作GH⊥AD于H,
∵点M为AB中点,AB=4,
∴AM=2,
∵AE=2,
∴AE=AM=2,
∴DE=10﹣2=8,
∵四边形ABCD是矩形,
∴∠A=∠CDA=90°,
∴∠AEM=∠DEF=45°,
∴DF=DE=8,
∵EG⊥ME,
∴∠MEG=90°,
∴∠HEG=∠EGH=45°,
∴GH=EH=4,
∴CG=DH=10﹣2﹣4=4,
Rt△FGC中,FG2=CG2+CF2,
FG=;
(2)在整个运动过程中,的值不会变化,理由是:
如图1,过点G作GH⊥AD于点H,
∵ME⊥EG,
∴△AME∽△HEG,△EHG∽△FDE,
∴,,
∴,,
∴∠EGM=∠EFG.
∵∠EGF+∠EFG=90°,
∴∠EGF+∠EGM=90°,即∠MGF=90°,
∴.
(3)设AM=m,则BM=4﹣m,DF=4m,
∴CF=4+4m.
由(2)得∠MGF=90°,
∴△MBG∽△GCF,
∴,
∴,
∴CG=8﹣2m,BG=2+2m.
分三种情况:
ⅰ)当EG=NG时,如图2,过点G作GH⊥AD于点H,则EH=HN=2m,
∴DN=(8﹣2m)﹣2m=8﹣4m.
∵DN∥CG,
∴,即,
∴m=﹣1±,
解得m=﹣1+或m=﹣1﹣(舍去).
∴AM=﹣1;
ⅱ) 当EN=NG时,∠NEG=∠NGE.
∵AD∥BC,
∴∠NEG=∠EGB,
∴∠EGB=∠NGE.
如图3,过点E作EK⊥BC于点K,则KG=8﹣(8﹣2m)=2m,
∴,
∴,
∴m=1.
ⅲ)当EN=EG时,如图4,∠ENG=∠EGN.
∵AD∥BC,
∴∠ENG=∠DGC,
∴∠EGN=∠DGC.
∴,
∴
∴.
综上所述:当AM=﹣1+或1或时,△EGN为等腰三角形.
科目:初中数学 来源: 题型:
【题目】为了改善教室空气环境,某校九年级1班班委会计划到朝阳花卉基地购买绿植.已知该基地一盆绿萝与一盆吊兰的价格之和是12元.班委会决定用60元购买绿萝,用90元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.
(1)分别求出每盆绿萝和每盆吊兰的价格;
(2)该校九年级所有班级准备一起到该基地购买绿萝和吊兰共计90盆,其中绿萝数量不超过吊兰数量的一半,该基地特地对吊兰价格给出了如下的优惠政策,一次性购买的吊兰超过20盆时,超过部分的吊兰每盆的价格打8折,根据该基地的优惠信息,九年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下面的两位数18, 27,36, 45,54,63,72,81,99都是9的整数倍,小明发现这些数的个位数字与十位数字的和也都是9的整数倍,例如18的的个位数字8与十位数字1的和是9.于是小明有了这样的结论:个位数字与十位数字的和是9的倍数的两位数一定是9的倍数.小明经过思考后给出了如下的证明:
设十位上的数字为,个位上的数字为,并且(为正整数)
那么这个两位数可表示为
∴这个两位数是9的倍数
小明猜想:个位数字与十位数字与百位数字的和是9的倍数的三位数也一定是9的倍数.小明的这个猜想的结论是否正确?若正确模仿小明的证明思路给出证明,若不正确举出反例.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅行社推出一条成本价为500元/人的省内旅游线路.游客人数(人/月)与旅游报价(元/人)之间的关系为,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.
(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;
(2)求经营这条旅游线路每月所需要的最低成本;
(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,CF⊥AB于点F,过点D作DE⊥BC的延长线于点E,且CF=DE.
(1)求证:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校团委准备暑期组织一次“研学之旅”活动,现有四个“研学”地方可选择:井冈山、龙虎山、庐山、瑞金(其中井冈山、瑞金是红色旅游胜地).校团委决定通过抽签方式确定其中两个地方.
抽签规则:将四个地方分别写在4张完全相同的纸牌正面,把4张纸牌背面朝上,洗匀后放在桌面上,团委书记小明先从中随机抽取一张纸牌,记下地名,再从剩下的纸牌中随机抽取第二张,记下地名.
(1)下列说法中,正确的序号是______.
①第一次“抽中井冈山”的概率是;
②“抽中的是两个地方是红色旅游胜地”是必然事件;
③“抽中的是两个地方是红色旅游胜地”是随机事件;
④“抽中的是两个地方是红色旅游胜地”是不可能事件.
(2)用树状图(或列表法)表示两次抽牌所有可能出现的结果,并求“抽中的是两个地方是红色旅游胜地”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线和抛物线(为正整数).
(1)抛物线与轴的交点______,顶点坐标______;
(2)当时,请解答下列问题.
①直接写出与轴的交点______,顶点坐标______,请写出抛物线,的一条相同的图象性质______;
②当直线与,相交共有4个交点时,求的取值范围.
(3)若直线()与抛物线,抛物线(为正整数)共有4个交点,从左至右依次标记为点,点,点,点,当时,求出,之间满足的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com