分析 (1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;
(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.
解答 (1)证明:∵AD∥BC
∴∠QDM=∠PCM
∵M是CD的中点,
∴DM=CM,
∵∠DMQ=∠CMP,
在△PCM和△QDM中
∵$\left\{\begin{array}{l}{∠QDM=∠PCM}\\{DM=CM}\\{∠DMQ=∠CMP}\end{array}\right.$,
∴△PCM≌△QDM(ASA).
(2)解:当四边形ABPQ是平行四边形时,PB=AQ,
∵BC-CP=AD+QD,
∴9-CP=5+CP,
∴CP=(9-5)÷2=2.
∴当PC=2时,四边形ABPQ是平行四边形.
点评 本题考查了全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com