精英家教网 > 初中数学 > 题目详情
17.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.
(1)试说明△PCM≌△QDM.
(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.

分析 (1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;
(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.

解答 (1)证明:∵AD∥BC
∴∠QDM=∠PCM
∵M是CD的中点,
∴DM=CM,
∵∠DMQ=∠CMP,
在△PCM和△QDM中
∵$\left\{\begin{array}{l}{∠QDM=∠PCM}\\{DM=CM}\\{∠DMQ=∠CMP}\end{array}\right.$,
∴△PCM≌△QDM(ASA).

(2)解:当四边形ABPQ是平行四边形时,PB=AQ,
∵BC-CP=AD+QD,
∴9-CP=5+CP,
∴CP=(9-5)÷2=2.
∴当PC=2时,四边形ABPQ是平行四边形.

点评 本题考查了全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图(1),四边形ABCD是平行四边形,BD是它的一条对角线,过顶点A、C分别作AM⊥BD,CN⊥BD,M,N为垂足.
(1)求证:AM=CN;
(2)如图(2),在对角线DB的延长线及反向延长线上分别取点E,F,使BE=DF,连接AE、CF,试探究:当EF满足什么条件时,四边形AECF是矩形?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一列数a1,a2,a3,…满足条件:a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,且n为整数),则a2017=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,某山坡坡长AB为110米,坡角(∠A)为34°,求坡高BC及坡宽AC.(结果精确到0.1米)
【参考数据:sin34°=0.559,cos34°=0.829,tan34°=0.675】

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,放在平面直角坐标系中的圆O的半径为3,现做如下实验:抛掷一枚均匀的正四面体骰子,它有四个顶点,各顶点数分别是1,2,3,4,每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)若第一次骰子朝上的点数为1,第二次骰子朝上的点数为2,此时点P是(填“是”或“否”)落在圆O内部;
(2)请你用树状图或列表的方法表示出P点坐标的所有可能结果;
(1)求点P落在圆O面上(含内部与边界)的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=$\sqrt{3}$米,BE=3米,求拉线CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知x=$\frac{\sqrt{5}-1}{2}$,y=$\frac{\sqrt{5}+1}{2}$,则x2+y2-xy的值是2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列四个数中,其相反数是正整数的是(  )
A.3B.-2C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,一块直径为a+b的半圆形钢板,从中挖去直径分别为a与b的两个半圆
(1)用含a、b的代数式表示剩下的钢板的周长(结果保留π)
(2)若a=15cm,b=10cm,则剩下的钢板的周长是多少厘米?(结果保留整数)

查看答案和解析>>

同步练习册答案