已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.
(1)求该抛物线的解析式及点M的坐标;
(2)连接ON,AC,证明:∠NOB=∠ACB;
(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.
解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,
∴,
解得.
∴抛物线为y=﹣x2+x+2;
∴抛物线为y=﹣x2+x+2=﹣(x﹣)2+,
∴顶点M(,).
(2)如图1,∵A(﹣1,0),B(2,0),C(0,2),
∴直线BC为:y=﹣x+2,
当x=时,y=,
∴N(,),
∴AB=3,BC=2,OB=2,BN==,
∴==,==,
∵∠ABC=∠NBO,
∴△ABC∽△NBO,
∴∠NOB=∠ACB;
(3)如图2,作EF⊥BC于F,
∵直线BC为y=﹣x+2,
∴设E(m,﹣m2+m+2),直线EF的解析式为y=x+b,
则直线EF为y=x+(﹣m2+2),
解 得,
∴F(m2,﹣m2+2),
∵EF=,
∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,
解得m=1,
∴﹣m2+m+2=2,
∴E(1,2),
(4)如图2,延长EF交y轴于Q,
∵m=1,
∴直线EF为y=x+1,
∴Q(0,1),
∵F(,),
∴FQ==,
∵EF=,EF⊥BC,
∴E、F两点关于直线BC对称.
科目:初中数学 来源: 题型:
如图,∠A0B的两边0A,0B均为平面反光镜,∠A0B=40°.在0B上有一点P,从P点射出一束光线经0A上的Q点反射后,反射光线QR恰好与0B平行,则∠QPB的度数是( )
A. 60° B. 80° C. 100° D. 120°
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.
(1)请画出树状图并写出(m,n)所有可能的结果;
(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com