精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

【答案】分析:(1)本题要分情况进行讨论:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根据BP,BQ的表达式和∠B的度数进行求解即可.
(2)本题可先用△ABC的面积-△PBQ的面积表示出四边形APQC的面积,即可得出y,t的函数关系式,然后另y等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值就是题目所求的值.
(3)可过P作PM⊥BC于M,先在直角三角形PQM中,用t表示出x,然后将x替换掉(2)中得出的y,t的函数关系式中t的值,即可得出y,x的函数关系式.
解答:解:(1)根据题意得AP=tcm,BQ=tcm,
△ABC中,AB=BC=3cm,∠B=60°,
∴BP=(3-t)cm,
△PBQ中,BP=3-t,BQ=t,若△PBQ是直角三角形,则
∠BQP=90°或∠BPQ=90°,
当∠BQP=90°时,BQ=BP,
即t=(3-t),t=1(秒),
当∠BPQ=90°时,BP=BQ,
3-t=t,t=2(秒),
答:当t=1秒或t=2秒时,△PBQ是直角三角形.

(2)过P作PM⊥BC于M,
△BPM中,sin∠B=
∴PM=PB•sin∠B=(3-t),
∴S△PBQ=BQ•PM=•t•(3-t),
∴y=S△ABC-S△PBQ
=×32×-•t•(3-t),
=t2-t+
∴y与t的关系式为y=t2-t+
假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的
则S四边形APQC=S△ABC
t2-t+=××32×
∴t2-3t+3=0,
∵(-3)2-4×1×3<0,
∴方程无解,
∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的

(3)在Rt△PQM中,∵MQ=|BM-BQ|=|(1-t)|,
MQ2+PM2=PQ2
∴x2=[(1-t)]2+[(3-t)]2
=(t2-2t+1)+(9-6t+t2),
=(4t2-12t+12)=3t2-9t+9,
∴t2-3t=(x2-9),
∵y=t2-t+
∴y=t2-t+=×(x2-9)+=x2+
∴y与x的关系式为y=x2+
点评:本题主要考查了直角三角形的判定、图形面积的求法、勾股定理以及二次函数的应用等知识点.考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案