精英家教网 > 初中数学 > 题目详情
已知:如图所示,直线AD与BC交于点O,OA=OD,OB=OC,AB与CD有怎样的数量关系?并说明理由.
分析:根据SAS推出△AOB≌△DOC,根据全等三角形性质推出即可.
解答:解:AB=CD,
理由是:∵在△AOB和△DOC中
OA=OD
∠AOB=∠DOC
OB=OC

∴△AOB≌△DOC(SAS),
∴AB=CD.
点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知:如图所示,直线AB、CD相交于O,OD平分∠BOE,∠AOC=42°,则∠AOE的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,直线l的解析式为y=
34
x-3
,并且与x轴、y轴分别交于点A、B.
(1)求A、B两点的坐标;
(2)半径为0.75的⊙O1,以0.4个单位/秒的速度从原点向x轴正方向运动,问在什么时刻与直线l相切;
(3)在第(2)题的条件下,在⊙O1运动的同时,与之大小相同的⊙O2从点B出发,沿BA方向运动,两圆经过的区域重叠部分是什么形状的图形?并求出其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,直线AB∥CD,CO⊥OD于O点,并且∠1=40度.则∠D的度数是(  )

查看答案和解析>>

同步练习册答案