精英家教网 > 初中数学 > 题目详情

圆一定有内接正多边形和外切正多边形;那么,正多边形是否也一定有外接圆和内切圆呢?

答案:
解析:

有.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•婺城区一模)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=
108°
108°
,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:013

下列命题:

(1)各边相等的圆内接多边形是正多边形.

(2)各边相等的圆外切多边形是正多边形.

(3)各角相等的圆内接多边形是正多边形.

(4)有一个外接圆和一个内切圆的多边形一定是正多边形.

其中真命题的个数为

[  ]

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=______,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源:2013年浙江省金华市婺城区中考数学一模试卷(解析版) 题型:解答题

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=______,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

同步练习册答案