精英家教网 > 初中数学 > 题目详情

如图是一张等腰直角三角形彩色纸,AC=BC=40 cm.将斜边上的高CD四等份,然后裁出3张宽度相等的纸条,再把这些纸条剪成面积最大的长方形,求这三张长方形纸条长分别是多少?

答案:
解析:


提示:

由于三张纸条是等腰梯形,要把它剪成面积最大的长方形,则其长一定是较短的底,因而必须求出EF、GH和MN的长,求这三条线段的长可以先求出AB的长,然后用相似三角形中对应边比等于对应高的比,分别求出EF、GH、MN的长.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在精英家教网AB边上,记为D点,AE为折痕,E在y轴上.
(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:△ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.
(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在△ABC的边上.小林设计出了一种剪法,如图1所示.请你再设计出一种不同于图1的剪法,并在图2中画出来.
(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为S1,则S1=
1
4
1
4
;在余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),得到2个新的正方形,将此次所得2个正方形的面积的和记为S2,则S2=
1
8
1
8
;在余下的4个三角形中再按照小林设计的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的和记为S3;按照同样的方法继续操作下去…,第n次裁剪得到
2n-1
2n-1
个新的正方形,它们的面积的和Sn=
1
2n+1
1
2n+1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。
(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标。

查看答案和解析>>

科目:初中数学 来源:2013-2014学年福建省永春县九年级上学期期末检测数学试卷(解析版) 题型:选择题

如图,将一张等腰直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为直角梯形,乙为等腰直角三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是( )

A.甲>乙>丙;?? B.乙>丙>甲;?? C.丙>乙>甲;?? D.丙>甲>乙.

 

查看答案和解析>>

同步练习册答案