精英家教网 > 初中数学 > 题目详情
已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1.求x=-
1
2
时,y的值.
依题意,设y1=mx2,y2=
n
x
,(m、n≠0)
∴y=mx2+
n
x

依题意有,
m+n=3
m-n=1

解得
m=2
n=1

∴y=2x2+
1
x

当x=-
1
2
时,y=2×
1
4
-2=-1
1
2

故y的值为-1
1
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图:点A(
3
,1)在反比例函数图象上,将y轴绕点O顺时针旋转30°,与反比例函数在第一象限内交于点B,
求:(1)反比例函数的解析式;
(2)求点B的坐标及△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=
k
x
(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为
1
4
,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若
l1
l2
=2
,试求
r1
r2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b〔k<0〕与x轴交于点A.
(1)求反比例函数的解析式;
(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),正方形ABCD和正方形AEFG的边AB和AG在同一条直线上.

(1)判断C、A、F是否在同一条直线上,说明理由?
(2)如图(2)以直线AB为x轴,线段AG的垂直平分线为y轴建立平面直角坐标系,已知OA=AB=1,判断点C、点F是否在同一个反比例函数的图象上?若在,求出这个函数的解析式;若不在,说明理由.
(3)若将(2)中的条件改为0A=AB=m,请完成(2)中的问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y元,x月结清余款.y与x的函数关系如图所示,试根据图象提供的信息回答下列问题.
(1)确定y与x的函数关系式,并求出首付款的数目;
(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在反比例函数y=
k
x
(k>0)上,点C在x轴的正半轴上且坐标为(4,O),△ODC是以CO为斜边的等腰直角三角形.
(1)求反比例函数的解析式;

(2)点B为横坐标为1的反比例函数图象上的一点,BA、BE分别垂直x轴和y轴,连接OB,将OABE沿OB折叠,使A点落在点A′处,A′B与y轴交于点F,求OF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=3x-3交x轴于B,交y轴于C,以OC为边作正方形OCEF,EF交双曲线y=
k
x
于点M.且FM=OB.
(1)求k的值.
(2)请你连OM、OG、GM,并求S△OGM
(3)点P是双曲线上一点,点N为x轴上一点,请探究:是否存在点P、N,使以B、C、P、N为顶点组成平行四边形?若存在,求出点P、N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形的面积为8,则一组邻边长y与x之间的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案