【题目】下列各小题中,都有OE平分∠AOC,OF平分∠BOC.
(1)如图①,若点A、O、B在一条直线上,∠EOF= ;
(2)如图②,若点A、O、B不在一条直线上,∠AOB=140°,则∠EOF= ;
(3)由以上两个问题发现:当∠AOC在∠BOC的外部时,∠EOF与∠AOB的数量关系是∠EOF= ;
(4)如图③,若OA在∠BOC的内部,∠AOB和∠EOF还存在上述的数量关系吗?请简单说明理由;
【答案】(1)90°;(2)70°;(3)∠AOB;(4)存在.
【解析】试题分析:(1)根据OE平分∠AOC,OF平分∠BOC,点A、O、B在一条直线上,即可得到∠EOF的度数;
(2)根据OE平分∠AOC,OF平分∠BOC,∠AOB=140°,即可得到∠EOF的度数;
(3)根据(2)中的方法,即可得到∠EOF与∠AOB的数量关系;
(4)若OA在∠BOC的内部,∠AOB和∠EOF还存在上述的数量关系,方法同(3).
试题解析:解:(1)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=∠COB;∠COE=∠AOC,又∵∠AOB=180°,∴∠EOF=∠COB+∠AOC=(∠BOC+∠AOC)=∠AOB=90°;
(2)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=∠COB;∠COE=∠AOC,又∵∠AOB=140°,∴∠EOF=∠COB+∠AOC=(∠BOC+∠AOC)=∠AOB=70°;
(3)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=∠COB;∠COE=∠AOC,∴∠EOF=∠COB+∠AOC=(∠BOC+∠AOC)=∠AOB;
(4)存在.
∵OF平分∠BOC,OE平分∠AOC,∴∠COF=∠COB;∠COE=∠AOC;
∴∠EOF=∠COB﹣∠AOC=(∠BOC﹣∠AOC)=∠AOB.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根。并求以此两根为边长的直角三角形的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为( )
A.6.767×1013元
B.6.767×1012元
C.6.767×1012元
D.6.767×1014元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,属于必然事件的是( )
A.任意购买一张电影票,座位号是奇数
B.明天晚上会看到太阳
C.五个人分成四组,这四组中有一组必有2人
D.三天内一定会下雨
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年里约奥运会后,同学们参与体育锻炼的热情高涨,为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下频数分布表和扇形统计图。根据上述信息解答下列问题:
(1)m=____,n=____;
(2)在扇形统计图中,D组所占圆心角的度数是____;
(3)全校共有3000名学生,该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD,点E,F分别在射线AB,射线BC上,AE=BF,DE与AF交于点O.
(1)如图1,当点E,F分别在线段AB,BC上时,则线段DE与AF的数量关系是 ,位置关系是 .
(2)如图2,当点E在线段AB延长线上时,将线段AE沿AF进行平移至FG,连接DG.
①依题意将图2补全;
②小亮通过观察、实验提出猜想:在点E运动的过程中,始终有.
小亮把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:连接EG,要证明,只需证四边形FAEG是平行四边形及△DGE是等腰直角三角形.
想法2:延长AD,GF交于点H,要证明,只需证△DGH是直角三角形.
图1 图2
请你参考上面的想法,帮助小亮证明.(一种方法即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com