精英家教网 > 初中数学 > 题目详情
如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的度数是( )

A.10°
B.20°
C.30°
D.40°
【答案】分析:连接BC,OB,根据圆周角定理先求出∠C,再求∠BAC.
解答:解:连接BC,OB,
AC是直径,则∠ABC=90°,
PA、PB是⊙O的切线,A、B为切点,则∠OAP=∠OBP=90°,
∴∠AOB=180°-∠P=140°,
由圆周角定理知,∠C=∠AOB=70°,
∴∠BAC=90°-∠C=20°.
故选B.
点评:本题利用了直径对的圆周角是直角,切线的概念,圆周角定理,四边形内角和定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是
8

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知PA、PB切⊙O于点A、B,OP交AB于C,则图中能用字母表示的直角共有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知PA、PB都是⊙O的切线,A、B为切点,且∠APB=60°.若点C是⊙O异于A、B的任意一点,则∠ACB=(  )
A、60°B、120°C、60°或120°D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•锦州二模)如图,已知PA、PB是⊙O的两条切线,A、B是切点,连接OP.
(1)求证:PA=PB;
(2)若⊙O的半径为2,PA=2
3
,求阴影部分面积.

查看答案和解析>>

同步练习册答案