精英家教网 > 初中数学 > 题目详情
29、已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.
分析:①首先过点P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根据两直线平行,同旁内角互补,即可求得∠PBA+∠1=180°,∠2+∠PCD=180°,则可得∠APC+∠PAB+∠PCD=∠PBA+∠1+∠2+∠PCD=360°;
②首先过点P作PQ∥AB,又由AB∥CD,可得PQ∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠PAB,∠2=∠PCD,则可得∠APC=∠PAB+∠PCD;
③由AB∥CD,根据两直线平行,同位角相等,即可得∠1=∠PCD,然后由三角形外角的性质,即可求得∠PCD=∠PAB+∠APC;
④由AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠PAB,然后由三角形外角的性质,即可求得∠PAB=∠PCD+∠APC.
解答:解:①过点P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠PBA+∠1=180°,∠2+∠PCD=180°,
∵∠APC=∠1+∠2,
∴∠APC+∠PAB+∠PCD=∠PBA+∠1+∠2+∠PCD=360°;

②过点P作PQ∥AB,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠1=∠PAB,∠2=∠PCD,
∵∠APC=∠1+∠2=∠PAB+∠PCD,
∴∠APC=∠PAB+∠PCD;

③∵AB∥CD,
∴∠1=∠PCD,
∵∠1=∠PAB+∠APC,
∴∠PCD=∠PAB+∠APC;

④∵AB∥CD,
∴∠1=∠PAB,
∵∠1=∠PCD+∠APC,
∴∠PAB=∠PCD+∠APC.
点评:此题考查了平行线的性质.注意掌握两直线平行,内错角相等,同位角相等,同旁内角互补与辅助线的添加方法是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,已知AB∥CD,分别探究下面四个图形中∠P和∠A、∠C的关系,并从所得的四个关系中任选一个加以说明,证明所探究的结论的正确性.

结论(1)
∠P+∠A+∠C=360°
(2)
∠P=∠A+∠C
(3)
∠P=∠C-∠A
(4)
∠P=∠A-∠C
.我选择结论
(1)
.说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠PAB与∠PCD的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,分别探究下面三个图形中∠APC和∠PAB、∠PCD的关系,请从你所得三个关系中选出任意一个,说明你探究的结论的正确性.

结论:(1)
∠APC+∠PAB+∠PCD=360°
∠APC+∠PAB+∠PCD=360°
    (2)
∠APC=∠PAB+∠PCD
∠APC=∠PAB+∠PCD
  (3)
∠PCD=∠APC+∠PAB
∠PCD=∠APC+∠PAB

选择结论
(1)
(1)

说明理由
过点P作PE∥AB,则AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°
过点P作PE∥AB,则AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°

查看答案和解析>>

同步练习册答案