精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,,点EAB边上,CE的长度;求证:设点P是线段AB上的一个动点,求的最小值是多少?

【答案】15,(2)见解析,(3 的最小值为

【解析】

,根据勾股定理求出CE

先证出,即可证明

作点D关于AB的对称点F,连接CFAB于点P,再用勾股定理求出CF的长即为的最小值.

解:

根据勾股定理可得:

中,

延长DAF,使得,并连接CF,此时CFAB的交点为点P,连接PD

,且

是等腰三角形,

的最小值为CF

过点FFH垂直CB的长线,垂足为H,如图所示:

根据题意得:

根据勾股定理可得,

的最小值为

故答案为:(15,(2)见解析,(3 的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,AEBCMFGBCN,∠1=∠2

1)求证:ABCD;(2)若∠D=∠350°,∠CBD70°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行了文明在我身边摄影比赛.已知每幅参赛作品成绩记为x(60x100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.

分数段

频数

频率

60x<70

18

0.36

70x<80

17

c

80x<90

a

0.24

90x<100

b

0.06

合计

1

根据以上信息解答下列问题:

(1)统计表中c的值为________;样本成绩的中位数落在分数段________中;

(2)补全频数直方图;

(3)80分以上(80)的作品将被组织展评,试估计全校被展评的作品数量是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1

(1)当∠A为70°时,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An 的数量关系____________;

(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=  

(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q —∠A1的值为定值.

其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述中,正确的有( )

①如果,那么;②满足条件n不存在;

③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;

④ΔABC中,若∠A+∠B=2∠C, ∠A-∠C=40°,则这个△ABC为钝角三角形.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CN是等边的外角内部的一条射线,点A关于CN的对称点为D,连接ADBDCD,其中ADBD分别交射线CN于点EP

(1)依题意补全图形;

2)若,求的大小(用含的式子表示);

3)用等式表示线段 之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:

1)这次抽样调查的样本容量是   ,并补全条形统计图;

2)在统计图中B等级所对应的圆心角为   D等级学生人数占被调查人数的百分比为   

3)该校七年级学生有1600人,请你估计其中A等级的学生人数.

查看答案和解析>>

同步练习册答案