精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y精英家教网=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
分析:(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(-1,0)B(4,5),然后利用待定系数法即可求得b,c的值;
(2)由直线AB经过点A(-1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2-2x-3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标;
(3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(
3
2
-
15
4
),点D的坐标为(1,-4)由S四边形EBFD=S△BEF+S△DEF即可求得;
②过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3),可得m2-2m-3=
5
2
,即可求得点P的坐标,又由过点F作b⊥EF交抛物线于P3,设P3(n,n2-2n-3),可得n2-2n-2=-
15
4
,求得点P的坐标,则可得使△EFP是以EF为直角边的直角三角形的P的坐标.
解答:解:(1)由已知得:A(-1,0),B(4,5),
∵二次函数y=x2+bx+c的图象经过点A(-1,0),B(4,5),
1-b+c=0
16+4b+c=5

解得:b=-2,c=-3;

(2)如图:∵直线AB经过点A(-1,0),B(4,5),
∴直线AB的解析式为:y=x+1,
∵二次函数y=x2-2x-3,
∴设点E(t,t+1),则F(t,t2-2t-3),
∴EF=(t+1)-(t2-2t-3)=-(t-
3
2
2+
25
4

∴当t=
3
2
时,EF的最大值为
25
4

∴点E的坐标为(
3
2
5
2
);

(3)①如图:顺次连接点E、B、F、D得四边形EBFD.
精英家教网
可求出点F的坐标(
3
2
-
15
4
),点D的坐标为(1,-4)
S四边形EBFD=S△BEF+S△DEF=
1
2
×
25
4
×(4-
3
2
)+
1
2
×
25
4
×(
3
2
-1)=
75
8

②如图:
精英家教网
ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3)
则有:m2-2m-3=
5
2

解得:m1=1+
26
2
,m2=1-
26
2

∴P1(1-
26
2
5
2
),P2(1+
26
2
5
2
),

ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2-2n-3)
则有:n2-2n-3=-
15
4

解得:n1=
1
2
,n2=
3
2
(与点F重合,舍去),
∴P3
1
2
,-
15
4
),
综上所述:所有点P的坐标:P1(1+
26
2
5
2
),P2(1-
26
2
5
2
),P3
1
2
,-
15
4
)能使△EFP组成以EF为直角边的直角三角形.
点评:此题考查了待定系数法求二次函数的解析式,四边形与三角形面积问题以及直角三角形的性质等知识.此题综合性很强,解题的关键是注意方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案