精英家教网 > 初中数学 > 题目详情
已知二次函数的图象如图所示,根据图中的数据,
(1)求二次函数的解析式;
(2)设此二次函数的顶点为P,求△ABP的面积.
(1)由二次函数图象知,函数与x轴交于两点(-1,0),(3,0),
设其解析式为:y=a(x+1)(x-3),
又∵函数与y轴交于点(0,2),
代入解析式得,
a×(-3)=2,
∴a=-
2
3

∴二次函数的解析式为:y=-
2
3
(x+1)(x-3)
,即y=-
2
3
x2+
4
3
x+2


(2)由函数图象知,函数的对称轴为:x=1,
当x=1时,y=-
2
3
×2×(-2)=
8
3

∴△ABP的面积S=
1
2
×AB×y
=
1
2
×4×
8
3
=
16
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3);
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上是否存在一点P,使得|PB-PC|的值最大?若存在,求出点P的坐标;
(3)如果点M是抛物线在第三象限的一动点;当M点运动到何处时,M点到AC的距离最大?求出此时的最大距离及M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=
1
2
x2+bx+c的图象经过点A(c,-2),,求证:这个二次函数图象的对称轴是x=3.
题目中的矩形框部分是一段墨水污染了无法辨认的文字.
(1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程;若不能,请说明理由;
(2)请你根据已有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上OB=
3
,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数解析式;
(3)设直线BE与(2)中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了x与函数y=x2+bx+c的一些对应值:
x0136
y50-45
(1)请根据表格求出y=x2+bx+c的解析式;
(2)写出抛物线y=x2+bx+c的对称轴与顶点坐标;
(3)求出y=x2+bx+c与x轴的交点坐标;
(4)画出y=x2+bx+c的大致图象,并结合图象指出,当y<0,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,BD=20,AD>AB,设∠ABD=α,已知sinα是方程25x2-35x+12=0的一个实根,点E,F分别是BC,DC上的点,EC+CF=8,设BE=x,△AEF的面积等于y.
(1)求出y与x之间的函数关系式;
(2)当E,F两点在什么位置时,y有最小值并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,等腰直角三角形ABC的斜边AB所在的直线上有E,F两点,且∠E+∠F=45°,AE=3,设AB=x,BF=y,则y与x的函数关系式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成(  )
A.1.5m,1mB.1m,0.5mC.2m,1mD.2m,0.5m

查看答案和解析>>

同步练习册答案