【题目】(1)如图,AD、BC相交于点O,OA=OC,∠OBD=∠ODB.求证:AB=CD.
(2)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若OD=,求∠BAC的度数.
科目:初中数学 来源: 题型:
【题目】2019年2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.下图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设个上下车站点,如图所示:
某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站): ;
请通过计算说明站是哪一站?
若相邻两站之间的平均距离为千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,点D是线段AB上一动点,将线段CD绕点C逆时针旋转50°至CD′,连接BD′.设AD为xcm,BD′为ycm.
小夏根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小夏的探究过程,请补充完整.
(1)通过取点、画图、测量,得到了与的几组值,如下表:
1 | 2 | 3 | 3.5 | 4 | 5 | 6 | ||
3.5 | 1.5 | 0.5 | 0.2 | 0.6 | 1.5 | 2.5 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BD=BD'时,线段AD的长度约为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又AP∥BE,AP=BE,(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC面积之比为( ).
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如:如图,数轴上点A表示的数为﹣2,点B表示的数为8,则A、两点间的距离AB=|﹣2﹣8|=10,线段AB的中点C表示的数为=3,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).
(1)用含t的代数式表示:t秒后,点P表示的数为 ,点Q表示的数为 .
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=AB;
(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上两点A、B对应的数分别是 6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.
(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?
(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解不等式组并求其整数解的和.
解:解不等式①,得_______;
解不等式②,得________;
把不等式①和②的解集在数轴上表示出来:
原不等式组的解集为________,
由数轴知其整数解为________,和为________.
在解答此题的过程中我们借助于数轴上,很直观地找出了原不等式组的解集及其整数解,这就是“数形结合的思想”,同学们要善于用数形结合的思想去解决问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC.
(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;
(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=6,CD=8,求BD的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com