【题目】如图,在⊙O中,半径OA⊥OB,过OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.
(1)求⊙O的半径OA的长;
(2)计算阴影部分的面积.
科目:初中数学 来源: 题型:
【题目】如图1,长方形的边在数轴上,为原点,长方形的面积为12,边的长为3
(1)数轴上点表示的数为
(2)将长方形沿数轴水平移动,移动后的长方形记为,设长方形移动的距离为,移动后的长方形与原长方形重叠部分的面积记为
①当等于原长方形面积的时,则点的移动距离 ,此时数轴上点表示的数为
②为线段的中点,点在线段上,且当点所表示的数互为相反数时,则的值为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,四边形ABCD是梯形,AB、CD相互平行,在AB上有两点E和F,此时四边形DCFE恰好是正方形,已知CD=a,AD=a+ab2,BC=a+2ab2,(单位:米)其中a>0,1<b2<4,现有甲乙两只妈蚁,甲蚂蚁从A点出发,沿着A﹣D﹣C﹣F﹣A的路线行走,乙蚂蚁从B点出发,沿着B﹣C﹣D﹣E﹣B的路线行走,甲乙同时出发,各自走回A和B点时停止.甲的速度是(米/秒),乙的速度是(米/秒).
(1)用含a、b的代数式表示:
①甲走到点C时,用时 秒;
②当甲走到点C时,乙走了 米;
③当甲走到点C时,此时乙在点M处,△AMC的面积是 平方米;
④当甲走到点C时,已经和乙相遇一次,它们从出发到这一次相遇,用时 秒.
(2)它们还会有第二次相遇吗?如果有,请求出两只蚂蚁从出发到第二次相遇所用的时间.如果没有,简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD,∠ADC的平分线DE,交BC于点E.
证明:①EC=EB;②AE⊥DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中, ⊙O的半径是1,直线AB与x轴交于点P(x,0),且与x轴的正半轴夹角为45°,若直线AB与⊙O有公共点,则x值的范围是( )
A. -1≤x≤1 B. -≤x≤ C. -<x< D. 0≤x≤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行单项式:
, ,,,,,…;①
,,,,,,…;②
,,,, ,,…;③
根据你发现的规律,解答下列问题:
(1)第①行的第8个单项式为 ;
(2)第②行的第9个单项式为 ;
(3)第③行的第n个单项式为 (用含n的式子表示);
(4)取每行的第8个单项式,令这三个单项式的和为A.
当时,求A的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E是线段CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)当DE是CD的一半时,求∠EAG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,A(﹣2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC.
(1)求C点的坐标;
(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;
(3)如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE﹣MN的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com