精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长;当t为何值时,MN∥OC;
(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?
(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由.
分析:(1)求线段AB的长可通过构建直角三角形进行求解.过B作BD⊥OA于D,那么AD=3,BD=4,根据勾股定理即可求出AB的长.
如果MN∥OC,那么△AMN∽△ABD,可的关于AN,AB,AM,AD的比例关系,其中AN=t,AM=6-t,AD=3,AB=5,由此可求出t的值.
(2)由于三角形CMN的面积无法直接求出,因此可用其他图形的面积的“和,差”关系来求.△CMN的面积=梯形AOCB的面积-△OCM的面积-△AMN的面积-△CBN的面积.
可据此来得出S,t的函数关系式.然后根据函数的性质即可得出S的最小值.
(3)易得△NME∽△ACO,利用相似三角形的对应边成比例得出的等量关系即可得出此时t的值.
解答:精英家教网解:(1)过点B作BD⊥OA于点D,
则四边形CODB是矩形,
BD=CO=4,OD=CB=3,DA=3.
在Rt△ABD中,AB=
32+42
=5

当MN∥OC时,MN∥BD,
∴△AMN∽△ADB,
AN
AB
=
AM
AD

∵AN=OM=t,AM=6-t,AD=3,
t
5
=
6-t
3

即t=
15
4
(秒).

(2)过点N作NE⊥x轴于点E,交CB的延长线于点F,精英家教网
∵NE∥BD,
∴△AEN∽△ADB,
EN
DB
=
AN
AB

EN
4
=
t
5
,EN=
4
5
t.
∵EF=CO=4,
∴FN=4-
4
5
t.
∵S=S梯形OABC-S△COM-S△MNA-S△CBN
∴S=
1
2
CO(OA+CB)-
1
2
CO•OM-
1
2
AM•EN-
1
2
CB•FN,
=
1
2
×4×(6+3)-
1
2
×4t-
1
2
×(6-t)×
4
5
t-
1
2
×3×(4-
4
5
t).
即S=
2
5
t2-
16
5
t+12(0≤t≤5).
由S=
2
5
t2-
16
5
t+12,
得S=
2
5
(t-4)2+
28
5

∴当t=4时,S有最小值,且S最小=
28
5


(3)设存在点P使MN⊥AC于点P
由(2)得AE=
3
5
t   NE=
4
5
t
∴ME=AM-AE=6-t-
3
5
t=6-
8
5
t,
∵∠MPA=90°,
∴∠PMA+∠PAM=90°,
∵∠PAM+∠OCA=90°,
∴∠PMA=∠OCA,
∴△NME∽△ACO
∴NE:OA=ME:OC
4
5
t
6
=
6-
8
5
t
4

 解得t=
45
16

∴存在这样的t,且t=
45
16
点评:本题结合了梯形的性质考查了二次函数的综合应用,利用数形结合的思想进行求解是解题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案