分析 设⊙O与BC相切于点M,连接OM、OB、OD、OE,如图所示,在Rt△OBM中,求出BM、BC,在Rt△DOE中,求出DE即可解决问题.
解答 解:设⊙O与BC相切于点M,连接OM、OB、OD、OE,如图所示:
则∠OMB=90°,∠OBM=30°,
∴BM=2OM=12,BC=2BM=24,
∴S△ABC=$\frac{\sqrt{3}}{4}$242=144$\sqrt{3}$,
∵四边形DEFG是正方形,
∴∠DOE=90°,
∴△DOE是等腰直角三角形,
∴DE=$\sqrt{2}$OD=6$\sqrt{2}$,
∴S正方形DEFG=72,
∴S△ABC:S正方形DEFG=144$\sqrt{3}$:72=2$\sqrt{3}$:1.
点评 本题考查了正方形的性质、正三角形的性质、正多边形与圆的关系;熟练掌握正三角形和正方形的性质,由题意求出正三角形内切圆的半径是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 6.5cm | B. | 5cm | C. | 9.5cm | D. | 11cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{x+1}{x-y}$=$\frac{-x+1}{x-y}$ | B. | $\frac{{x}^{2}+{y}^{2}}{x+y}$=x+y | ||
C. | $\frac{0.5a+b}{0.2a-0.3b}$=$\frac{5a+10b}{2a-3b}$ | D. | $\frac{a-b}{a+b}$=$\frac{b-a}{b+a}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com