精英家教网 > 初中数学 > 题目详情
已知:如图,MN是⊙O的切线,切点为A,MN平行于弦CD,弦AB交CD于点E.
求证:AC2=AE•AB.
证明:连接AO并延长交⊙O于点F,连接CF,CB,
∵MN是⊙O的切线,
∴FA⊥MN,
∴∠MAC+∠CAF=90°,
∵AF过点O,
∴∠ACF=90°,
∴∠CAF+∠F=90°,
∴∠MAC=∠F
∵∠CAB=∠CAB
∴△ACE△ABC
AC
AB
=
AE
AC

∴AC2=AE•AB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.一个点可以确定一条直线
B.两个点可以确定两条直线
C.三个点可以确定一个圆
D.不在同一直线上的三点确定一个圆

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若AC=2
5
,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(q0fq•张家口一模)如4:⊙O与AB相切于点A,BO与⊙O交于点6,∠BA6=手0°,则∠B等于(  )
A.20°B.50°C.30°D.60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠C=90°,∠B=30°,O为AB上一点,AO=2,⊙O的半径为
9
5
,⊙O与AC的位置关系是(  )
A.相交B.相离C.相切D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O在Rt△ABC的斜边AB上,以O为圆心,OA长为半径的⊙O切BC于点D,且分别交AC、AB于点E、F,若AC=6,BC=6
3

(1)求⊙O的半径;
(2)求弓形EDF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.
求证:AP•AC+BP•BD=AB2
证明:连接AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90°,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
当点P在半圆周上时,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP•AC+BP•BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点D作DEA'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
1
3
S△ABC
时,求AD的长,并判断此时直线A'C与⊙E的位置关系.

查看答案和解析>>

同步练习册答案