精英家教网 > 初中数学 > 题目详情
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
200;150

试题分析:
(1); 
(2)当x=30元时,最大利润y=200元 .
(3)当x=25时,既能保证销售量最大,又可以每天获得150元的利润.
点评:此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的思维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,O是坐标原点,直角梯形AOCD的顶点A的坐标为
(0,),点D的坐标为(1,),点C轴的正半轴上,过点O且以点D为顶点的抛物线经过点C,点PCD的中点.

(1)求抛物线的解析式及点P的坐标;
(2) 在轴右侧的抛物线上是否存在点Q,使以Q为圆心的圆同时与轴、直线OP相切.若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由;
(3)点M为线段OP上一动点(不与O点重合),过点OMD的圆与轴的正半轴交于点N.求证:OM+ON为定值.
(4)在轴上找一点H,使∠PHD最大.试求出点H的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)
(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①是矩形包书纸的示意图,虚线是折痕,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.

(1)现有一本书长为25cm,宽为20cm,厚度是2cm,如果按照如图①的包书方式,并且折叠进去的宽度是3cm,则需要书包纸的长和宽分别为多少?(请直接写出答案).
(2)已知数学课本长为26 cm,宽为18.5cm,厚为1cm,小明用一张面积为1260cm2的矩形书包纸按如图①包好了这本书,求折进去的宽度.
(3)如图②,矩形ABCD是一张一个角(△AEF)被污损的书包纸,已知AB=30,BC=50,AE=12,AF=16,要使用没有污损的部分包一本长为19,宽为16,厚为6的字典,小红认为只要按如图②的剪裁方式剪出一张面积最大的矩形PGCH就能包好这本字典. 设PM=x,矩形PGCH的面积为y,当x取何值时y最大?并由此判断小红的想法是否可行.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2+2x-5有
A.最大值-5B.最小值-5C.最大值-6D.最小值-6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数的图象如图所示,其顶点坐标为M(1,-4).

(1)求二次函数的解析式;
(2)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线与这个新图象有两个公共点时,求的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于抛物线,当x      时,函数值y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数图像上的最低点的横坐标为      

查看答案和解析>>

同步练习册答案