【题目】如图,AB//CD.
(1)如图①,若∠ABE=40o,∠BEC=140o,∠ECD=_________o
(2)如图①,试探究∠ABE,∠BEC,∠ECD的关系,并说明理由;
(3)如图②,若CF平分∠ECD,且满足CF∥BE,试探究∠ECD,∠ABE的数量关系,并说明理由.
【答案】(1)∠ECD=80°;(2)∠BEC=180°-∠ECD+∠ABE;(3)∠ABE=∠ECD.
【解析】
(1)过点E作EF∥AB,根据平行线的性质即可得到∠ECD的度数;
(2)过点E作EF∥AB,根据平行线的性质即可得到∠ABE,∠BEC,∠ECD的关系;
(3)延长BE和DC相交于点G,利用平行线的性质、三角形的外角以及角平分线的性质即可得到答案.
解:
(1)如图①,过点E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠ABE=∠BEF,∠FEC+∠ECD=180°,
∵∠ABE=40°,∠BEC=140°,
∴∠FEC=100°,
∴∠ECD=180°-100°=80°;
(2)如图①,过点E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠ABE=∠BEF,∠FEC+∠ECD=180°,
∴∠BEC=180°-∠ECD+∠ABE;
(3)如图②延长BE和DC相交于点G,
∵AB∥CD,
∴∠ABE=∠G,
∵BE∥CF,
∴∠GEC=∠ECF,
∵∠ECD=∠GEC+∠G,
∴∠ECD=∠ECF+∠ABE,
∵CF平分∠ECD,
∴∠ECF=∠DCF,
∴∠ECD=∠ECD+∠ABE,
∴∠ABE=∠ECD.
故答案为:(1)80;(2)∠BEC=180°-∠ECD+∠ABE;(3)∠ABE=∠ECD.
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6),点X,Y分别在x,y轴上.
(1)请直接写出D点的坐标 ;
(2)连接OB、OD,OD交BC于点E,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE=n,求∠OFE的度数.
(3)若长方形ABCD以每秒个单位的速度向下运动,设运动时间为t秒,问在第一象限内是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的?若存在,请求出t的值,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】D为等边△ABC的边AC上一点,E为直线AB上一点,CD=BE.
(1)如图1,求证:AD=DE;
(2)如图2,DE交CB于点F.
①若DE⊥AC,CF=6,求BF的长;
②求证:DF=EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一元二次方程下列说法:①当时,则方程一定有一根为;②若则方程一定有两个不相等的实数根;③若是方程的一个根,则一定有;④若,则方程有两个不相等的实数根。其中正确的是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段分割成AM、MN、NB,若,,,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】苏果超市用5000元购进一批新品种的苹果进行试销,由于试销状况良好,超市又调拨11000元资金购进该种苹果,但这次的进价比试销时每千克多了0.5元,购进苹果的数量是试销时的2倍。
(1)试销时该品种苹果的进价是每千克多少元?
(2)如果超市将该品种的苹果按每千克7元定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?(7分)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为 ( )
A.5B.6C.8D.10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com