精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形OABC是边长为4的正方形,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,_____

【答案】5.

【解析】根据正方形的性质找到角相等的关系得出△CNO∽△BMN,由比例式即可得出m,n的最小值,从而得答案.

解:∵OABC是正方形,∴∠OCN=∠NBM=90°,∴∠CON+∠CNO=90°,∵ON⊥NM,∴∠CNO+∠BNM=90°,∴△CNO∽△BMN,∴CN:CO=BM:NB,∴=,∴4m-16=n2-4n,∴4m-12=n2-12=n2-4n+4=(n-2)2,∵(n-2)2≥0,

∴4-12≥0,m≥3,∵OM==,∴当OM最小时,m最小,∵m≥3,∴m=3,∴n=2,∴m+n=5.故答案为:5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】因式分解:

(1)3ax2﹣6axy+3ay2

(2)(3x﹣2)2﹣(2x+7)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD交于点OCE平分∠BCDAB于点E,交BD于点F,且∠ABC60°AB2BC,连接OE.下列结论:①∠ACD30°SABCDAC·BCOEAC6SOCF2SOEF.成立的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(﹣24)、B3m),若直线ABx轴,则m的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.

(1)设花圃的一边AB长为x米,请你用含x的代数式表示另一边AD的长为   米;

(2)若此时花圃的面积刚好为45m2,求此时花圃的长与宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.

(1)求证:∠1=∠F;

(2)若sinB=,EF=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个等腰三角形的两边长分别是612,则它的周长为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20cm,BC=18cm,ACB=50°,王浩的手机长为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由(提示:sin50°0.8,cos50°0.6,tan50°1.2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,某超市从一楼到二楼有一自动扶梯,图②是侧面示意图.已知自动扶梯AB的坡度为12.4,AB的长度是13米,MN是二楼楼顶,MNPQCMN上处在自动扶梯顶端B点正上方的一点,BCMN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)(  )

A. 10.8 B. 8.9 C. 8.0 D. 5.8

查看答案和解析>>

同步练习册答案