【题目】如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE,CF交于点G,半径BE,CD交于点H,且点C是 的中点,若扇形的半径为3,则图中阴影部分的面积等于 .
【答案】 ﹣9
【解析】解:两扇形的面积和为: = ,
过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,
则四边形EMCN是矩形,
∵点C是 的中点,
∴EC平分∠AEB,
∴CM=CN,
∴矩形EMCN是正方形,
∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,
∴∠MCG=∠NCH,
在△CMG与△CNH中, ,
∴△CMG≌△CNH(ASA),
∴中间空白区域面积相当于对角线是3的正方形面积,
∴空白区域的面积为: ×3×3= ,
∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和= ﹣9.
所以答案是: ﹣9.
【考点精析】根据题目的已知条件,利用扇形面积计算公式的相关知识可以得到问题的答案,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
科目:初中数学 来源: 题型:
【题目】如图①,将两个边长为1的小正方形分别沿对角线剪开,拼成正方形ABCD.
(1)正方形ABCD的面积为 ,边长为 ,对角线BD= ;
(2)求证:;
(3)如图②,将正方形ABCD放在数轴上,使点B与原点O重合,边AB落在x轴的负半轴上,则点A所表示的数为 ,若点E所表示的数为整数,则点E所表示的数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】补全下列推理过程:
如图,已知AB∥CE,∠A=∠E,试说明:∠CGD=∠FHB.
解:因为AB∥CE(已知),
所以∠A=∠ ( ).
因为∠A=∠E(已知),
所以∠ =∠ (等量代换).
所以 ∥ ( ).
所以∠CGD=∠ ( ).
因为∠FHB=∠GHE( ),
所以∠CGD=∠FHB(等量代换).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现计划把甲种货物306吨和乙种货物230吨运往某地,已知有A、B两种不同规格的货车共50辆,如果每辆A型货车最多可装甲种货物7吨和乙种货物3吨,每辆B型货车最多可装甲种货物5吨和乙种货物7吨.
(1)装货时如何安排A、B两种货车的辆数,共有哪些方案?
(2)使用A型车每辆费用为600元,使用B型车每辆费用800元,上述方案中,哪个方案运费最省?最省的运费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(单位:cm).等腰直角△ABC以2cm/s的速度沿着直线向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为ycm2.
⑴写出y与x的关系式;
⑵当x=3.5时,y是多少;
⑶当重叠部分的面积是正方形面积的一半时,三角形移动了多少时间;
⑷正方形边长改为30cm,等腰直角三角形大小不变,移动到AB与EF重合为止.
①x的取值范围是 ;
②当x满足 时,y=50;
③写出当15≤x≤20时,y与x的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查,下面是根据收集的数据绘制的两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)此次共调查了名学生,扇形统计图中,“艺术鉴赏”所对应的圆心角的度数是度;
(2)请把这个条形统计图补充完整;
(3)现该校700名学生报名参加这四个选修项目,请你估计有多少名学生参加了“数学思维”项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p= ,且其日销售量y(kg)与时间t(天)的关系如表:
时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com