精英家教网 > 初中数学 > 题目详情
2.如图,已知正方形ABCD中,AB=a,点E为AB的中点,点F在AD边上,且AF=$\frac{1}{4}$AD,试说明EF⊥CE.

分析 先求得AF、EB的长,然后依据两边对应成比例且夹角相等的两个三角形相似可证明△AFE∽△BEC,由相似三角形的性质可得到∠AEF=∠BCE,然后证明∠AEF+∠BEC=90°,从而可求得∠FEC=90°.

解答 解:∵ABCD为正方形,
∴AB=BC=AD=a,∠A=∠B=90°.
∵AF=$\frac{1}{4}$AD,
∴AF=$\frac{1}{4}$a.
∵E是AB的中点,
∴AE=BE=$\frac{1}{2}$AB=$\frac{1}{2}$a.
∴$\frac{AF}{AE}=\frac{BE}{BC}$.
又∵∠A=∠B,
∴△AFE∽△BEC.
∴∠AEF=∠BCE.
∵∠BEC+∠BCE=90°,
∴∠BEC+∠AEF=90°.
∴∠FEC=90°.
∴EF⊥EC.

点评 本题主要考查的是正方形的性质、相似三角形的性质和判定,证得△AFE∽△BEC是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.QQ好友的等级会用一些图标来表示,如图是小明同学的两个好友的等级示例,小明想知道一个太阳    和一个月亮所表示的等级.
若设一个太阳表示x等级,一个月亮表示y等级,可列方程组为$\left\{\begin{array}{l}{3x+y=52}\\{2x+2y=40}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知${(2x-1)^5}={a_5}{x^5}+{a_4}{x^4}+{a_3}{x^3}+{a_2}{x^2}+{a_1}x+{a_0}$对于任意的x都成立
求(1)a0的值
(2)a0-a1+a2-a3+a4-a5的值
(3)a2+a4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.观察下列等式:
1+2+3+4+…+n=$\frac{1}{2}$n(n+1);
1+3+6+10+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+20+…+$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
则有:1+5+15+35+…$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在直角坐标平面内,已知点A的坐标(-5,0).
(1)写出图中B点的坐标(-3,4);
(2)若点B关于原点对称的点是C,则△ABC的面积是20;
(3)在平面直角坐标系中找一点D,使△OBD为等腰直角三角形,且以OB为直角边,则点D的坐标是(4,3)、(1,7)、(-7,1)、(-4,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在所给网络图(每小格均为边长是1的正方形)中完成下列各题:
(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1
(2)在DE上画出点P,使PB+PC最小;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二次函数y=ax2+bx+c的图象的顶点(3,4)且与y轴的交点为(0,-5),求这个二次函教的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知直角三角形ABC中,点D为斜边BC的中点,AC=4,BC=8,直角EDF的两边分别与直线AC,直线AB交于点E和点F,BF=7,则AE的长为7$\sqrt{3}$-4或7$\sqrt{3}$+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠C=90°,AC=3cm,BC=6cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CBA与C、P、Q三点构成的三角形相似,求所需要的时间是多少秒?

查看答案和解析>>

同步练习册答案