精英家教网 > 初中数学 > 题目详情
(2006•益阳)如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

【答案】分析:(1)把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点.
(2)根据函数解析式就可求出抛物线的顶点坐标,利用待定系数法求出反比例函数的解析式.
经过C,B的直线解析式可以用待定系数法求得,进而求出E点的坐标.把E的坐标代入反比例函数解析式,就可以判断是否在反比例函数的图象上.
(3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,△AOC是等腰直角三角形,根据勾股定理就可以求出CD,AC的长度.Rt△ADC中中根据三角函数的定义就可以求出三角函数值.
解答:解:(1)因为A(3,0)在抛物线y=-x2+mx+3上,
则-9+3m+3=0,解得m=2.
所以抛物线的解析式为y=-x2+2x+3.
因为B点为抛物线与x轴的交点,求得B(-1,0),
因为C点为抛物线与y轴的交点,求得C(0,3).

(2)∵y=-x2+2x+3=-(x-1)2+4,
∴顶点D(1,4),
画这个函数的草图.
由B,C点的坐标可求得直线BC的解析式为y=3x+3,
∵点E(-2,n)在y=3x+3上,
∴E(-2,-3).
可求得过D点的反比例函数的解析式为y=
当x=-2时,y==-2≠-3.
∴点E不在过D点的反比例函数图象上.

(3)过D作DF⊥y轴于点F,则△CFD为等腰直角三角形,且CD=
连接AC,则△AOC为等腰直角三角形,且AC=3
因为∠ACD=180°-45°-45°=90°,
∴Rt△ADC中,tan∠DAC=
另解:∵Rt△CFD∽Rt△COA,

∵∠ACD=90°,
∴tan∠DAC=
点评:本题主要考查了待定系数法求函数的解析式,以及二次函数顶点坐标的求法.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2006•益阳)如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省益阳市中考数学试卷(解析版) 题型:解答题

(2006•益阳)如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较小直角边的长为6cm,较小锐角的度数为30°.
(1)将△ECD沿直线AC翻折到如图(a)的位置,ED′与AB相交于点F,请证明:AF=FD′;
(2)将△ECD沿直线l向左平移到(b)的位置,使E点落在AB上,你可以求出平移的距离,试试看;
(3)将△ECD绕点C逆时针方向旋转到图(c)的位置,使E点落在AB上,请求出旋转角的度数.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省益阳市中考数学试卷(解析版) 题型:选择题

(2006•益阳)如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法是:
(1)作线段BC=a;
(2)作线段BC的垂直平分线MN,MN与BC相交于点D;
(3)在直线MN上截取线段h;
(4)连接AB,AC,△ABC为所求的等腰三角形.
上述作法的四个步骤中,有错误的一步你认为是( )

A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:初中数学 来源:2006年湖南省益阳市中考数学试卷(解析版) 题型:填空题

(2006•益阳)如图是正方体的平面展开图,每个面上都标有一个汉字,与“自”字相对的面上的字是   

查看答案和解析>>

同步练习册答案