(1)探究新知:
①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线
上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?
若存在,请求出此时点E的坐标,若不存在,请说明理由.
﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚
(1)①略
②相等.理由略
(2)存在,E点的坐标为E1(2,3);;
【解析】(本小题满分12分)
﹙1﹚①证明:分别过点M,N作 ME⊥AB,NF⊥AB,垂足分别为点E,F.
∵ AD∥BC,AD=BC,
∴ 四边形ABCD为平行四边形.
∴ AB∥CD.
∴ ME= NF.
∵S△ABM=
,S△ABN=
,
∴ S△ABM= S△ABN. ……………………………………………………………………1分
②相等.理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K.
则∠DHA=∠EKB=90°.
∵ AD∥BE,
∴ ∠DAH=∠EBK.
∵ AD=BE,
∴ △DAH≌△EBK.
∴ DH=EK. ……………………………2分
∵ CD∥AB∥EF,
∴S△ABM=
,S△ABG=
,
∴ S△ABM= S△ABG. …………………………………………………………………3分
﹙2﹚答:存在. …………………………………………………………………………4分
解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为.
又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得
.
∴ 该抛物线的表达式为,即
. ………………………5分
∴ D点坐标为(0,3).
设直线AD的表达式为,代入点A的坐标,得
,解得
.
∴ 直线AD的表达式为.
过C点作CG⊥x轴,垂足为G,交AD于点H.则H点的纵坐标为.
∴ CH=CG-HG=4-2=2. …………………………………………………………6分
设点E的横坐标为m,则点E的纵坐标为.
过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为,EF∥CG.
由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等.
①若E点在直线AD的上方﹙如图③-1﹚,则PF=,EF=
.
∴ EP=EF-PF==
.
∴ .
解得,
. ……………………………7分
当时,PF=3-2=1,EF=1+2=3.
∴ E点坐标为(2,3).
同理 当m=1时,E点坐标为(1,4),与C点重合. ………………………………8分
②若E点在直线AD的下方﹙如图③-2,③-3﹚,
则. ……………………………………………9分
∴.解得
,
. ………………………………10分
当时,E点的纵坐标为
;
当时,E点的纵坐标为
.
∴ 在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);;
. ………………12分
﹙其他解法可酌情处理﹚
科目:初中数学 来源: 题型:
k | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
k | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com