精英家教网 > 初中数学 > 题目详情
(2005•丰台区)如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)(x<0),连接BP,过P点作PC⊥PB交过点A的直线a于点C(2,y)
(1)求y与x之间的函数关系式;
(2)当x取最大整数时,求BC与PA的交点Q的坐标.

【答案】分析:(1)本题可用相似三角形来求,根据相似三角形BPO和PCA,可得出关于OB、OP、PA、AC的比例关系式,由此可得出关于x,y的函数关系式.(要注意P点的横坐标和C点的纵坐标都是负数).
(2)根据(1)得出的函数解析式即可得出x的最大整数值,代入抛物线的解析式中即可求出C点的坐标,然后根据B、C的坐标,求出直线BC的解析式,即可求出直线BC与x轴交点Q的坐标.
解答:解:(1)∵PC⊥PB,BO⊥PO
∴∠CPA+∠OPB=90°,∠PBO+∠OPB=90°
∴∠CPA=∠PBO
∵A(2,0),C(2,y)在直线a上
∴∠BOP=∠PAC=90°
∴△BOP∽△PAC


∵x<0,y<0,

∴y=-x2+x.

(2)∵x<0,
∴x的最大整数值为-1
当x=-1时,y=-
∴C点的坐标为(2,-);
设直线BC的解析式为y=kx+2,将C点坐标代入后可得:
2k+2=-,k=-
因此直线BC的解析式为y=-x+2.
当y=0时,0=-x+2,x=
因此Q点的坐标为(,0).
点评:本题考查了三角形相似、一次函数及二次函数的综合应用等知识点.考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2005•丰台区)在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为,sin∠ABC=,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.

查看答案和解析>>

科目:初中数学 来源:2005年北京市丰台区中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•丰台区)在直角坐标系中,⊙O1经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O1的切线与y轴交于点C,点O到直线AB的距离为,sin∠ABC=,求直线AC的解析式;
(2)若⊙O1经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.

查看答案和解析>>

科目:初中数学 来源:2005年北京市丰台区中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•丰台区)如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)(x<0),连接BP,过P点作PC⊥PB交过点A的直线a于点C(2,y)
(1)求y与x之间的函数关系式;
(2)当x取最大整数时,求BC与PA的交点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《数据收集与处理》(03)(解析版) 题型:填空题

(2005•丰台区)为了调查某一路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:

那么这一个星期在该时段通过该路口的汽车平均每天为    辆.

查看答案和解析>>

同步练习册答案