分析 (1)①利用角平分线的作法得出即可;
②利用垂直平分线的作法得出即可;
(2)利用垂直平分线的性质得出∠PGA=∠QGA,进而得出△PAG≌△QAG(ASA),则AP=AQ,即可得出答案.
解答 解:(1)如图所示:
①AE为所求作的角平分线;
②PQ为所求作的垂直平分线;
(2)AP=AQ.
证明:∵PQ是AF的垂直平分线,
∴∠PGA=∠QGA=90°,
∵AE是∠MAN的平分线,
∴∠PAG=∠QAG,
在△PAG和△QAG中,
$\left\{\begin{array}{l}{∠PGA=∠QGA}\\{AG=AG}\\{∠PAG=∠QAG}\end{array}\right.$,
∴△PAG≌△QAG(ASA),
∴AP=AQ.
点评 此题主要考查了角平分线、线段垂直平分线的作法以及其性质和全等三角形的判定与性质等知识,根据已知得出∠BDC=∠BDE是解题关键.
科目:初中数学 来源: 题型:选择题
A. | (2,1) | B. | (1,1) | C. | (-2,1) | D. | (4,-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | SSS | B. | SAS | C. | ASA | D. | AAS |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com