【题目】如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )
A.①④B.①③C.①②③D.②③④
科目:初中数学 来源: 题型:
【题目】如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是( )
A.10B.8C.6D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于两个点,和图形,如果在图形上存在点,(,可以重合),使得,那么称点与点是图形的一对“倍点”.
已知的半径为1,点.
(1)①点到的最大值,最小值;
②在,,这三个点中,与点是的一对“倍点”的是_____;
(2)在直线上存在点与点是的一对“倍点”,求的取值范围;
(3)正方形的顶点,,若正方形上的所有点与点都是的一对“倍点”,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应全民阅读的号召,某社区开展了为期一年的“读书伴我行”阅读活动,在阅读活动开展之初,随机抽取若干名社区居民,对其年阅读量(单位:本)进行了调查统计与分析,结果如下:
平均数 | 中位数 | 众数 | 最大值 | 最小值 | 方差 |
6.9 | 7.5 | 8 | 16 | 1 | 18.69 |
经过一年的“读书伴我行”阅读活动,某社区再次对这部分居民的年阅读量进行调查,并对收集的数据进行了整理、描述和分析,下面给出了部分信息.
a.居民的年阅读量统计表如下:
阅读量 | 2 | 4 | 5 | 8 | 9 | 10 | 11 | 12 | 13 | 16 | 21 |
人数 | 5 | 5 | 5 | 3 | 2 | m | 5 | 5 | 3 | 7 | n |
b.分组整理后的居民阅读量统计表、统计图如下:
组别 | 阅读量/本 | 频数 |
15 | ||
13 | ||
c.居民阅读量的平均数、中位数、众数、最大值、最小值、方差如下:
平均数 | 中位数 | 众数 | 最大值 | 最小值 | 方差 |
10.4 | 10.5 | q | 21 | 2 | 30.83 |
根据以上信息,回答下列问题:
(1)样本容量为______;
(2)_____;_____;______;
(3)根据社区开展“读书伴我行”阅读活动前、后随机抽取的部分居民阅读量的两组调查结果,请至少从两个方面对社区开展阅读活动的效果进行评价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y/cm | 6.0 | 4.8 | 4.5 | 6.0 | 7.4 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.
(1)求一次函数和反比例函数的表达式;
(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP=5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.
已知:.
求作:所在圆的圆心.
曈曈的作法如下:如图2,
(1)在上任意取一点,分别连接,;
(2)分别作弦,的垂直平分线,两条垂直平分线交于点.点就是所在圆的圆心.
老师说:“曈曈的作法正确.”
请你回答:曈曈的作图依据是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com