A. | 3cm | B. | 4cm | C. | 5cm | D. | 8cm |
分析 由?ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD-AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.
解答 解:∵?ABCD的周长为26cm,
∴AB+AD=13cm,OB=OD,
∵△AOD的周长比△AOB的周长多3cm,
∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中点,
∴AE=$\frac{1}{2}$BC=4cm;
故选:B.
点评 此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{5}{2}$cm | B. | 3cm | C. | 3$\sqrt{3}$cm | D. | 6cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com