【题目】如图①,在矩形ABCD中,AB=10 cm,BC=8 cm.点P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后△APD的面积S1(cm2)与时间x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与时间x(秒)的函数关系图象.
(1)参照图②,求a、 b及图②中c的值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1、y2与出发后的运动时间x(秒)的函数关系式,并求出点P、点Q相遇时x的值;
(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.
【答案】(1)6;2;17;(2)1;(3);(4)1或19.
【解析】分析:(1)根据题意和S△APD求出a,b,c的值;(2)由图象和题易求出d的关系式,从而解出d;(3)首先求出y1,y2关于x的等量关系,然后根据题意可得y1=y2求出x的值;(4)当点Q出发17秒时,点P到达点D停止运动,点Q还需运动2秒,即共运动19秒时,可使P、Q这两点在运动路线上相距的路程为25cm.
本题解析:
解:(1)观察图②,得当x=a时,S△APD=PA·AD=a×8=24,
∴a=6,b==2,c=8+=17.
(2)依题意,得(22-6)d=28-12,解得d=1.
(3)y1=2x-6,y2=22-x.当点P、点Q相遇时,2x-6=22-x,得x=.
(4)当点Q出发17秒时,点P到达点D停止运动,点Q还需运动2秒,
即共运动19秒时,可使P、Q这两点在运动路线上相距的路程为25cm.
点Q出发1s,则点P,Q相距25cm,设点Q出发x秒,点P、点Q相距25cm,则2x+x=28-25,解得x=1.
∴当点Q出发1或19秒时,点P、点Q在运动路线上相距的路程为25cm.
故答案为:1或19.
科目:初中数学 来源: 题型:
【题目】我们可以将任意三位数表示为(其中a、b、c 分别表示百位上的数字,十位上的数字和个位上的数字,且a0)显然,= 100a+10b+c;我们把形如和的两个三位数称为一对“姊妹数”(其中x、y、z是三个连续的自然数)如:123和321是一对“姊妹数”,789和987是一对“姊妹数”.
(1)一对“姊妹数”的和为1110,求这对“姊妹数”.
(2)如果用x表示百位数字,试说明:任意一对“姊妹数”的和能被37整除.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:如图①,平面内两条直线、相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线和的距离(P≥0,q≥0),称有序非负实数对是点M的距离坐标。
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线的关系式为,直线的关系式为,M是平面直角坐标系内的点。
(1)若,求距离坐标为时,点M的坐标;
(2)若,且,利用图②,在第一象限内,求距离坐标为时,点M的坐标;
(3)若,则坐标平面内距离坐标为时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法)。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.
(1)直接写出AE与BC的位置关系;
(2)求证:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴、轴交点分别为、,另一直线经过,且把分成两部分.
(1)若被分成的两部分面积相等,求和的值.
(2)若被分成的两部分面积之比为,求和的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长方形运动场被分割成 A、B、A、B、C 共 5 个区域,A 区域是边长为 a 米的正方形,C 区是边长为 c 米的正方形
(1)列式表示一个 B 区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)当a=4,c=2时,求运动场地的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:
类别/单价 | 成本价 | 销售价(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)该商场购进甲、乙两种矿泉水各多少箱?
(2)全部售完500箱矿泉水,该商场共获得利润多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com