精英家教网 > 初中数学 > 题目详情

【题目】发现与探索。

(1)根据小明的解答将下列各式因式分解

a2-12a+20;a-1)2-8(a-1)+7; a2-6ab+5b2

(2)根据小丽的思考解决下列问题:

①说明:代数式a2-12a+20的最小值为-16.

②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.

【答案】(1)(a-10)(a-2);(a-7)(a-3);(a-5b)(a-b);(2)①说明见解析;②﹣a2+12a-8.的最大值为28.

【解析】(1)①把所给的多项式加上36后再减去36,类比小明的解法,前三项利用完全平方公式因式分解后,再利用平方差公式因式分解即可;②把所给的多项式加上16后再减去16,类比小明的解法,前三项利用完全平方公式因式分解后,再利用平方差公式因式分解即可;把所给的多项式加上9b2后再减去9b2,类比小明的解法,前三项利用完全平方公式因式分解后,再利用平方差公式因式分解即可;(2)①把所给的多项式化为(a-6)2-16后,根据非负数的性质可得(a-6)2≥0,当x=6时,所给多项式的最小值为-16;②根据非负数的性质可得无论a取何值-(a+1)2都小于等于0,再加上8,即可得代数式-(a+1)2+8小于等于8,所以-(a+1)2+8的最大值为8;把所给的多项式化为﹣(a-6)2+28后,类比上面的解题方法解答即可.

(1)a2-12a+20

原式=a2-12a+36-36+20

=(a-6)2-42

=(a-10)(a-2)

(a-1)2-8(a-1)+12

原式=(a-1)2-8(a-1)+16-16+12

=(a-5)2-22

=(a-7)(a-3)

a2-6ab+5b2

原式=a2-6ab+9b2-9b2+5b2

=(a-3b)2-4b2

=(a-5b)(a-b)

(2)根据小明的发现结合小丽的思考解决下列问题.

①说明:代数式a2-12a+20的最小值为﹣16.

a2-12a+20

原式=a2-12a+36-36+20

=(a-6)2-16

无论a取何值(a-6)2都大于等于0,再加上﹣16,

则代数式(a-6)2-16大于等于-16,

a2-12a+20的最小值为-16

②无论a取何值-(a+1)2都小于等于0,再加上8,

则代数式-(a+1)2+8小于等于8,

则-(a+1)2+8的最大值为8

﹣a2+12a-8.

原式=﹣(a2-12a+8)

=﹣(a2-12a+36-36+8)

=﹣(a-6)2+36-8

=﹣(a-6)2+28

无论a取何值﹣(a-6)2都小于等于0,再加上28,

则代数式﹣(a-6)2+28小于等于28,

则﹣a2+12a-8的最大值为28.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).

(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司以每吨元的价格收购了吨某种药材,若直接在市场上销售,每吨的售价是元.该公司决定加工后再出售,相关信息如下表所示:

工艺

每天可加工药材的吨数

成品率

成品售价

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益.)

受市场影响,该公司必须在天内将这批药材加工完毕.

(1)若全部粗加工,可获利_______________________

(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利_____________

(3)若部分粗加工,部分精加工,恰好天完成,求可获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示三角形ABC是等边三角形,DBC边上的一点三角形ABD经过旋转后到达三角形ACE的位置.

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)如果MAB的中点那么经过上述旋转后M到了什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).

(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB=8cm,C是线段AB上一点,AC=3.2cm,MAB的中点,NAC的中点.

(1)求线段CM的长;

(2)求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的边BC上的高,∠B60°C45°AC6.求:

(1)AD的长;

(2)ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是(
A.
B.3
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx与反比例函数y= 的图象不可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案