精英家教网 > 初中数学 > 题目详情
材料:我们将能完全覆盖三角形的最小圆称为该三角形的最小覆盖圆.若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.问题:能覆盖住边长为、4的三角形的最小圆的直径是   
【答案】分析:根据等腰三角形的三边长可知,此等腰三角形是锐角三角形,因此能盖住三角形的最小圆应该是三角形的外接圆;可过等腰三角形的顶角顶点作圆的直径,通过勾股定理和相交弦定理求出此圆的外接圆直径.
解答:解:如图;△ABC中,AB=AC=,BC=4;
由于△ABC是锐角三角形,因此能覆盖此三角形的最小圆应该是△ABC的外接圆⊙O;
过A作⊙O的直径AE,交BC于D;
在Rt△ABD中,AB=,BD=2,由勾股定理得:AD=3;
由相交弦定理知:BD2=AD•DE,即DE=BD2÷AD=
故⊙O的直径为AD+DE=3+=
点评:此题考查了等腰三角形的性质、勾股定理、垂径定理、相交弦定理等知识的综合应用,首先判断出△ABC的形状是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

材料:我们将能完全覆盖三角形的最小圆称为该三角形的最小覆盖圆.若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.问题:能覆盖住边长为
13
13
、4的三角形的最小圆的直径是
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2011•石家庄二模)阅读材料:
我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆.
例如:线段AB的最小覆盖圆就是以线段AB为直径的圆.
操作探究:
(1)如图1:已知线段AB与其外一点C,作过A、B、C三点的最小覆盖圆;(不写作法,保留作图痕迹)
(2)边长为1cm的正方形的最小覆盖圆的半径是
2
2
2
2
cm;
如图2,边长为1cm的两个正方形并列在一起,则其最小覆盖圆的半径是
5
2
5
2
cm;
如图3,半径为1cm的两个圆外切,则其最小覆盖圆的半径是
2
2
cm.
联想拓展:
⊙O1的半径为8,⊙O2,⊙O3的半径均为5.
(1)当⊙O1、⊙O2、⊙O3两两外切时(如图4),则其最小覆盖圆的半径是
40
3
40
3

(2)当⊙O1、⊙O2、⊙O3两两相切时,(1)中的结论还成立吗?如果不成立,则其最小覆盖圆的半径是
13
13
,并作出示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:
我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆.
例如:线段AB的最小覆盖圆就是以线段AB为直径的圆.
操作探究:
(1)如图1:已知线段AB与其外一点C,作过A、B、C三点的最小覆盖圆;(不写作法,保留作图痕迹)
(2)边长为1cm的正方形的最小覆盖圆的半径是______cm;
如图2,边长为1cm的两个正方形并列在一起,则其最小覆盖圆的半径是______cm;
如图3,半径为1cm的两个圆外切,则其最小覆盖圆的半径是______cm.
联想拓展:
⊙O1的半径为8,⊙O2,⊙O3的半径均为5.
(1)当⊙O1、⊙O2、⊙O3两两外切时(如图4),则其最小覆盖圆的半径是______;
(2)当⊙O1、⊙O2、⊙O3两两相切时,(1)中的结论还成立吗?如果不成立,则其最小覆盖圆的半径是______,并作出示意图.

查看答案和解析>>

科目:初中数学 来源:2011年河北省石家庄市中考数学二模试卷(解析版) 题型:解答题

阅读材料:
我们将能完全覆盖平面图形的最小圆称为该平面图形的最小覆盖圆.
例如:线段AB的最小覆盖圆就是以线段AB为直径的圆.
操作探究:
(1)如图1:已知线段AB与其外一点C,作过A、B、C三点的最小覆盖圆;(不写作法,保留作图痕迹)
(2)边长为1cm的正方形的最小覆盖圆的半径是______

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷21(金山学校 来小权)(解析版) 题型:填空题

材料:我们将能完全覆盖三角形的最小圆称为该三角形的最小覆盖圆.若三角形为锐角三角形,则其最小覆盖圆为其外接圆;若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.问题:能覆盖住边长为、4的三角形的最小圆的直径是   

查看答案和解析>>

同步练习册答案