精英家教网 > 初中数学 > 题目详情

【题目】若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,

我们称这样的数k言唯一数,交换其首位与个位的数字得到一个新数k',并记F(k)=

(1)最大的四位言唯一数   ,最小的三位言唯一数   

(2)证明:对于任意的四位言唯一数”m,m+m'能被11整除;

(3)设四位言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9y≠1,x、y均为整数),若F(n)仍然为言唯一数”,求所有满足条件的四位言唯一数”n.

【答案】(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为

【解析】

根据题目给出的新定义,正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k为“言唯一数”,解答即可.

(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221

(2)证明:设,则

都为正整数,则也是正整数

对于任意的四位“言唯一数”能被整除.

(3) 均为整数)

.

仍然为言唯一数, 末尾数字为0,129末尾数字为9

的末尾数字为2,

①当时,

时,,此时

②当时,

时,,此时

满足条件的所有的四位“言唯一数”为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD为∠BAC的平分线,DEABE,DFACF,

(1)证明AE=AF;

(2)若ABC面积是36cm2,AB=10cm,AC=8cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:
普通消费:35元/次;
白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;
钻石卡消费:购卡560元/张,凭卡每次消费不再收费.
以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.
(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?
(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;
(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.

(1)当t为何值时,△PAE为直角三角形?

(2)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M、N分别是正方形ABCD边DC、AB的中点,分别以AE、BF为折痕,使点D、点C落在MN的点G处,则△ABG是 三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABCBA=BC,点DAB延长线上一点,DF⊥ACFBCE,

求证:△DBE是等腰三角形.

查看答案和解析>>

同步练习册答案