分析 (1)由SAS证明△DAB≌△FAC,得出对应边相等即可;
(2)①由SAS证明△DAB≌△FAC,得出对应边相等即可;
②过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,证出∠ADH=∠DEM,由AAS证明△ADH≌△DEM,得出EM=DH=6,DM=AH=2,得出CN=EM=6,EN=CM=6,证出△BCG是等腰直角三角形,得出CG=BC=4,求出GN=2,由勾股定理求出GE的长即可.
解答 (1)证明:菱形ADEF中,AD=AF,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
在△DAB与△FAC中,$\left\{\begin{array}{l}{AD=AF}&{\;}\\{∠BAD=∠CAF}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△DAB≌△FAC(SAS),
∴BD=CF;
(2)解:①(1)中的结论仍然成立;理由如下:
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF
在△DAB与△FAC中,$\left\{\begin{array}{l}{AD=AF}&{\;}\\{∠BAD=∠CAF}&{\;}\\{AB=AC}&{\;}\end{array}\right.$,
∴△DAB≌△FAC(SAS),
∴BD=CF;
②过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,如图所示:
∵∠BAC=90°,AB=AC,
∴BC=$\sqrt{2}$AB=4,AH=BH=HC=2,
∴CD=BC=4,
∴DH=6,CF=BD=8,
∵四边形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四边形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADE=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH与△DEM中,$\left\{\begin{array}{l}{∠ADH=∠DEM}&{\;}\\{∠AHD=∠DME}&{\;}\\{AD=DE}&{\;}\end{array}\right.$,
∴△ADH≌△DEM(AAS),
∴EM=DH=6,DM=AH=2,
∴CN=EM=6,EN=CM=6,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=2,
∴GE=$\sqrt{G{N}^{2}+E{N}^{2}}$=$\sqrt{{2}^{2}+{6}^{2}}$=2$\sqrt{10}$.
点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、矩形的性质、等腰直角三角形的判定与性质、等腰三角形的性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com