精英家教网 > 初中数学 > 题目详情
6.如图,平行四边形ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是(  )
A.10cmB.8cmC.6cmD.4cm

分析 根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.

解答 解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠DAE=∠BAE,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴∠BAE=∠AEB,
∴AB=BE,
设AB=CD=xcm,则AD=BC=(x+2)cm,
∵?ABCD的周长为20cm,
∴x+x+2=10,
解得:x=4,
即AB=4cm,
故选D.

点评 本题考查了平行四边形的性质,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.下列计算:(1)34÷35=$\frac{1}{3}$;(2)($\frac{1}{2012}$)0=(-2012)0;(3)(a-25÷(a-52=1;(4)x4÷x9=x-5,其中正确的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,AB是⊙O的弦,OA=10,F是线段AB上的点,且FB=FO,OF的延长线交⊙O于点D,∠B=30°,则阴影部分的面积为(  )
A.25π-$\frac{100\sqrt{3}}{3}$B.25π-$\frac{50\sqrt{3}}{3}$C.30π-$\frac{25\sqrt{3}}{2}$D.20π-$\frac{50\sqrt{3}}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知抛物线y=x2-(5+a)x+5a与x轴交于定点A和另一点C,
(1)求定点A的坐标;
(2)点B(1,2)是抛物线y=x2-(5+a)x+5a与以坐标原点为圆心的圆的一个交点,试判断直线AB与圆位置关系;
(3)在(2)中的抛物线上是否存在点P(P在点A的右上方),使△PAC、△PBC的面积相等?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,已知直线AB∥直线CD,点E,F分别在直线AB和CD上,EN∥MF,HE∥FN,若∠N=114°,HE平分∠AEN,则∠MFH的度数为(  )
A.48°B.58°C.66°D.68°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在矩形ABCD中,AB=$\sqrt{2}$,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为(  )
A.$\frac{π}{2}$-$\sqrt{2}$B.$\frac{π}{2}$-$\frac{\sqrt{2}}{2}$C.π-$\sqrt{2}$D.π-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)(3.14-π)0+(-$\frac{1}{2}$)-2-2×2-1
(2)(2a2+ab-2b2)(-$\frac{1}{2}$ab)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如果点M在y轴的左侧,且在x轴的上侧,到两坐标轴的距离都是1,则点M的坐标为(  )
A.(-1,2)B.(-1,-1)C.(-1,1)D.(1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若a<b,则下列不等式中成立的是(  )
A.a-b>0B.a-2<b-2C.$\frac{1}{2}$a>$\frac{1}{2}$bD.-2a<-2b

查看答案和解析>>

同步练习册答案