精英家教网 > 初中数学 > 题目详情

【题目】如图,已知函数y=2x和函数的图象交于AB两点,过点AAE⊥x轴于点E,若△AOE的面积为4P是坐标平面上的点,且以点BOEP为顶点的四边形是平行四边形,则满足条件的P点坐标是____

【答案】0,﹣4),(﹣4,﹣4),(44

【解析】

先求出BOE的坐标,再根据平行四边形的性质画出图形,即可求出P点的坐标.

解:如图

∵△AOE的面积为4,函数的图象过一、三象限,∴k=8

反比例函数为

函数y=2x和函数的图象交于AB两点,

∴AB两点的坐标是:(24)(﹣2,﹣4),

以点BOEP为顶点的平行四边形共有3个,

满足条件的P点有3个,分别为:P10,﹣4),P2(﹣4,﹣4),P344).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则

=__(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过两点,与y轴交于点C,连接AB,AC,BC.

求抛物线的表达式;

求证:AB平分

抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.

1)求抛物线的解析式和顶点坐标.

2)当点位于轴下方时,求面积的最大值.

3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.关于的函数解析式,并写出自变量的取值范围;

②当时,点的坐标是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

(1)求口袋中黄球的个数;

(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,

求两次摸 出都是红球的概率;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形.点A的坐标为(02),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A.

1)求反比例函数与一次函数的解析式;

2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD△ABC的角平分线,点E位于边BC上,已知BDBABE的比例中项.

(1)求证:CDE=ABC;

(2)求证:ADCD=ABCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCDE分别在边ABACDEBC的延长线相交于点F

1)求证

2)当AB=12AC=9AE=8BD的长与的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:

①△BO′A可以由△BOC绕点B逆时针旋转60°得到;&

②点O与O′的距离为4;

③∠AOB=150°;

④四边形AOBO′的面积为6+3

⑤S△AOC+S△AOB=6+.

其中正确的结论是_______________

查看答案和解析>>

同步练习册答案