精英家教网 > 初中数学 > 题目详情
1.如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,-2),反比例函数y=$\frac{k}{x}$的图象经过点C,一次函数y=ax+b的图象经过A、C两点.
(1)求反比例函数与一次函数的解析式;
(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

分析 (1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,-2),然后利用待定系数法求反比例函数与一次函数的解析式;
(2)设P(t,-$\frac{6}{t}$),根据三角形面积公式和正方形面积公式得到$\frac{1}{2}$×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.

解答 解:(1)∵点A的坐标为(0,1),点B的坐标为(0,-2),
∴AB=1+2=3,
∵四边形ABCD为正方形,
∴Bc=3,
∴C(3,-2),
把C(3,-2)代入y=$\frac{k}{x}$得k=3×(-2)=-6,
∴反比例函数解析式为y=-$\frac{6}{x}$,
把C(3,-2),A(0,1)代入y=ax+b得$\left\{\begin{array}{l}{3a+b=-2}\\{b=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,
∴一次函数解析式为y=-x+1;
(2)设P(t,-$\frac{6}{t}$),
∵△OAP的面积恰好等于正方形ABCD的面积,
∴$\frac{1}{2}$×1×|t|=3×3,解得t=18或t=-18,
∴P点坐标为(18,-$\frac{1}{3}$)或(-18,$\frac{1}{3}$).

点评 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.某店购进一批商品,每件进价20元,在销售过程中发现该商品每周的销售量y(件)与售价x(元)之间满足一次函数关系;当售价为22元时,销量为36件;当售价为24元时,销量为32件.
(1)求y与x的函数关系式;
(2)求该店每周销售这种商品所获得利润w(元)与售价x(元)之间的函数关系式,并求出售价为多少元时,所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,D是AC上一点,联结BD,∠CBD=∠A.
(1)求证:△CBD∽△CAB;
(2)若D是AC中点,CD=3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系中,已知△ABC的三个顶点为A(3,0),B(1,1),C(0,-2),将△ABC关于y轴对称得到△A1B1C1.请画出平面直角坐标系,并在其中画出△ABC和△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16. 某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,抛物线y=mx2-4mx+4m+3的顶点为A.
(1)求点A的坐标;
(2)将线段OA沿x轴向右平移2个单位长度得到线段O′A′.
①直接写出点O′和A′的坐标;
②若抛物线y=mx2-4mx+4m+3与四边形AOO′A′有且只有两个公共点,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.设一个两位数的个位数字为a,十位数字为b(a,b均为正整数,且a>b),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差一定是9的倍数,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,所得的两位数比原来的两位数大27,求原来的两位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知m是绝对值最小的有理数,且-2a2by+1与3axb3是同类项,试求多项式2x2-3xy+6y2-3mx2+mxy-9my2的值.

查看答案和解析>>

同步练习册答案