精英家教网 > 初中数学 > 题目详情
10.关于x的方程x2-2(k-1)x+k2-1=0的两个实数根的平方和等于16,k的值为-1.

分析 根据根与系数的关系求得x1+x2=2(k-1),x1•x2=k2-1,然后将其代入x12+x22=(x1+x22-4x1x2列出关于k的新方程,通过解新方程即可求得k的值.

解答 解:∵关于x的方程x2-2(k-1)x+k2-1=0有两个实数根,
∴△=4(k-1)2-4(k2-1)≥0,
解得,k≤1.
设方程x2-2(k-1)x+k2-1=0两个实数根为x1、x2.则
x1+x2=2(k-1),x1•x2=k2-1,
∴x12+x22=(x1+x22-2x1x2=4(k-1)2-2(k2-1)=16,即k2-4k-5=0,
解得,k1=-1,k2=5(不合题意,舍去),
故答案是:-1.

点评 此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知函数y=ax2+bx-1的图象经过点(3,2),对称轴为直线x=1.
(1)求这个函数的解析式;
(2)当x>0时,求使y≥2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知一元二次方程x2-4x-3=0的两根为m、n,则m2-3mn+n2=31.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,平面坐标系内,点A1坐标为(1,0),过点A1作x轴的垂线交直线y=x于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…按此作法进行去,点Bn(n为正整数)的横坐标为(  )
A.($\sqrt{2}$)n-1B.($\sqrt{2}$)nC.($\sqrt{2}$)n+1D.2n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知y-2与3x-4成正比例函数关系,且当x=2时,y=3.
(1)写出y与x之间的函数解析式;
(2)若点P(a,-3)在这个函数的图象上,求a的值;
(3)若y的取值范围为-1≤y≤1,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,扇形AOB的圆心角为90°,半径为2,点C为OB中点,点D在$\widehat{AB}$上,将扇形沿直线CD折叠,若点B,O重合,则图中阴影部分的周长为π+2.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知关于x的一元二次方程2x2+mx+n=0的两个根是1和-1,则mn的值是0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.方程组$\left\{\begin{array}{l}{x+y+z=10}\\{x+y=8}\\{x=y+z}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=5}\\{y=3}\\{z=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图等边三角形ABC和正方形BDEC的边长均为2,⊙O经过点A,D,E三点.
求:⊙O的半径.

查看答案和解析>>

同步练习册答案