【题目】在探究锐角三角函数的意义的学习过程中,小亮发现:“如图1,在中,,可探究得到”
(1)请你利用图1探究说明小亮的说法是否正确;
(2)小丽猜想“如果在钝角三角形中,两个锐角正弦值与它们所对边的边长之间也有一定的关系“在图2的钝角中,是钝角,请你利用图2帮小丽探究与之间的关系,并写出探究过程.
(3)在锐角中,,,之间存在什么关系,请你探究并直接写出结论.
【答案】(1)小亮说法正确;(2),探究过程见解析;(3)
【解析】
(1)分别利用∠A,∠B的正弦值求出斜边c的长度,从而判断小亮的说法是否正确;
(2)过点作于点,利用∠A,∠C的正弦值求出BD的长,从而得到,将等式进行变形得到结论;
(3)过点A作AM⊥BC,过点B作BN⊥AC,分别在Rt△ABM和Rt△ACM中求出,从而得到,在Rt△ABN和Rt△BCM中,求出,从而得到,从而问题得解.
解:(1)∵在中,
∴
∵
∴
∴
∴小亮说法正确;
(2)解:过点作于点,
∵在中,
∴
∵在中,
∴
∴
∴;
(3)过点A作AM⊥BC,过点B作BN⊥AC
在Rt△ABM和Rt△ACM中,
∴
在Rt△ABN和Rt△BCM中,
∴
∴
即.
科目:初中数学 来源: 题型:
【题目】2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离的长.
参考数据:°,°,°,°,°,°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.
(1)当⊙M半径为2,点M和点O重合时.
①点P1(﹣2,0),P2(1,1),P3(2,2)中,⊙O的“美好点”是 ;
②若直线y=2x+b上存在点P为⊙O的“美好点”,求b的取值范围;
(2)点M为直线y=4上一动点,以2为半径作⊙M,点P为直线y=x上一动点,点P为⊙M的“美好点”,求点M的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点的坐标是,点的坐标是,为的中点,将绕点逆时针旋转后得到,若反比例函数的图象恰好经过的中点,则的值是( )
A.24B.25C.26D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着经济的快速发展,环境问题越来越受到人们的关注.为了了解垃圾分类知识的普及情况,某校随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将调查结果绘制成下面两幅不完整的统计图:
(1)本次被调查的学生有 名,扇形统计图中,
(2)将条形统计图剩余的部分补充完整(包括朱标记的数据)
(3)估计该校名学生中“非常了解”与“了解”的人数和是多少.
(4)某环保小队有3名男生,1名女生,从中随机抽取2人在全校做垃圾分类知识交流,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.
(3)①点B1的坐标为 ;②求△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,AD=6,P为射线AB上一个动点,过P作PF⊥AC,垂足为F,交CD于点G,连接CP与BF交于点H,过点C,P,F作⊙O.
(1)当AP=5时,求证:∠CPB=∠FBC.
(2)当点P在线段AB上时,若△FCH的面积等于△PBH面积的4倍,求DG的长.
(3)当⊙O与△ADC的其中一边相切时,求所有满足条件的AP的长.
(4)当H将线段CP分成1:4的两部分时,求AP的长(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年初,受新冠肺炎疫情的影响,全国各中小学都采取了线上学习方式.为了解九年级学生网上学习的效果,甲、乙两个学校同时参加了一次相同的网上测试,记录成绩(百分制).分别从甲、乙两所学校随机抽取了20名学生的测试成绩,数据如下(百分制):
甲:63 70 95 84 75 82 78 78 86 96
92 100 52 89 88 84 84 92 90 84
乙:75 95 85 93 85 92 84 89 96 98
46 86 77 100 100 68 50 85 78 69
整理上面的数据,得到表格如下:
测试成绩(分) | |||||
甲 | 1 | 2 | 3 | 9 | 5 |
乙 | 2 | 2 | 3 | 6 | 7 |
样本数据的平均数、中位数、众数如下表所示:
统计量 | 平均数 | 中位数 | 众数 |
甲 | 83.1 | 84 | |
乙 | 82.4 | 85.5 |
根据以上信息,解答下列问题:
(1)表中的 , ;
(2)若甲学校共有500名学生,请用样本中的数据估计甲学校共有多少人的测试成绩达到优秀(规定:测试成绩分为优秀);
(3)根据以上数据推断一所你认为成绩较好的学校,并说明理由.(至少从两个不同的角度结合数据说明推断的合理性)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com