精英家教网 > 初中数学 > 题目详情
3.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为$\frac{15+\sqrt{33}}{3}$或$\frac{15-\sqrt{33}}{3}$.

分析 设AE=A′E=x,则DE=ED′=15-x,只要证明BD′=ED′=15-x,在Rt△BA′D′中,根据BD′2=BA′2+A′D′2,列出方程即可解决问题.

解答 解:∵把△ABE沿BE折叠,使点A落在点A′处,
∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°,
∵把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,
∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,
设AE=A′E=x,则DE=ED′=15-x,
∵AD∥BC,
∴∠1=∠EBC,
∵∠1=∠2,
∴∠2=∠EBD′,
∴BD′=ED′=15-x,
∴A′D′=15-2x,
在Rt△BA′D′中,
∵BD′2=BA′2+A′D′2
∴82+(15-2x)2=(15-x)2
解得x=$\frac{15±\sqrt{33}}{3}$,
∴AE=$\frac{15+\sqrt{33}}{3}$或$\frac{15-\sqrt{33}}{3}$.

点评 本题考查翻折变换、矩形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考填空题中的压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,点A(0,1),点B(-$\sqrt{3}$,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A1OB1,使∠A1OB1=90°,∠B1=30°,作OA2⊥A1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,…,以同样的作法可得到Rt△AnOBn,则当n=2017时,点A2017的纵坐标为(  )
A.($\frac{\sqrt{3}}{2}$)2017B.-($\frac{\sqrt{3}}{2}$)2017C.($\frac{\sqrt{3}}{2}$)2018D.-($\frac{\sqrt{3}}{2}$)2018

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某车间加工1500个零件后,采用了新工艺,工作效率提高了50%,这样加工同样多的零件就少用10小时,采用新工艺前每小时加工多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=2,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为(  )
A.1B.2C.2.5D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:(2x+3)(2x-3)-(x+1)(3x-2),其中x=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将△AOB绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.

(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,设其横坐标为t.
①设抛物线的对称轴l与x轴交于点E,连结PE交CD于点F,当△CEF与△COD相似时,求点P的坐标;
②当∠BAP=45°时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.“六一”期间,某文具店欲购进A、B两种型号的文具共100只进行销售,其进价和售价之间的关系如表:若该文具店购进A种型号的文具x只,销售完这批文具后所获得的利润为y元.
型号进价(元/只)售价(元/只)
A型1218
B型1523
(1)求y与x的函数关系式;
(2)由于资金紧缺,在实际进货时进货款不得超过1380元,则该文具店销售完这批文具后所能获得最大利润为多少?

查看答案和解析>>

同步练习册答案